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ABSTRACT 

A query considered in isolation offers limited information about a 
searcher’s intent. Query context that considers pre-query activity 
(e.g., previous queries and page visits), can provide richer infor-
mation about search intentions. In this paper, we describe a study 
in which we developed and evaluated user interest models for the 
current query, its context (from pre-query session activity), and 
their combination, which we refer to as intent. Using large-scale 
logs, we evaluate how accurately each model predicts the user’s 
short-term interests under various experimental conditions. In our 
study we: (i) determine the extent of opportunity for using context 
to model intent; (ii) compare the utility of different sources of 
behavioral evidence (queries, search result clicks, and Web page 
visits) for building predictive interest models, and; (iii) investigate 
optimally combining the query and its context by learning a model 
that predicts the context weight for each query. Our findings 
demonstrate significant opportunity in leveraging contextual in-
formation, show that context and source influence predictive ac-
curacy, and show that we can learn a near-optimal combination of 
the query and context for each query. The findings can inform the 
design of search systems that leverage contextual information to 
better understand, model, and serve searchers’ information needs. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – search process, information filtering. 

General Terms 

Algorithms, Experimentation, Human Factors, Measurement. 

Keywords 

Search context, short-term interests, interest models. 

1. INTRODUCTION 
Search behavior resides within an external context that motivates 
the problem situation and influences interaction behavior for the 
duration of the search session and beyond [14]. Satisfying search-
ers’ information needs involves a thorough understanding of their 
interests expressed explicitly through search queries, or implicitly 
through search engine result page (SERP) clicks or post-SERP 
browsing behavior. The information retrieval (IR) community has 
theorized about context [14], developed context-sensitive search 
models (e.g., [24][26]), and performed user studies investigating 
the role of context in the search process (e.g., [18]). 

Most IR systems assume that queries are context-independent. 
This abstraction is necessary in Cranfield-style evaluations where 
relevance judgments are gathered independent of any user or in-
teraction context [31]. In larger operational systems such as Web 
search engines, scale constraints have often favored simple con-
text-independent approaches. Recent research suggests that this 
may be changing as log data and machine learning techniques are 
applied to model activity-based context (i.e., context gleaned from 
prior user interactions) in applications such as query suggestion 
[7], query classification [8], Web page recommendation [30], and 
Web search result ranking [32]. However, this research is often 
specific to particular applications, and an assessment of the value 
of modeling activity-based context that is applicable to a broad 
range of search and recommendation settings is required. 

In this paper we describe a systematic study of the value of con-
textual information during Web search activity. We construct 
interest models of the current query, its context comprising pre-
ceding session activity such as previous queries or previous clicks 
on search results, the combination of the query and its context 
(called intent), and evaluate the predictive effectiveness of these 
models using future actions. Figure 1 illustrates each of the mod-
els and their role in representing users’ interests. Queries are de-
picted as circles and pages as rectangles. The current query is . 

Figure 1. Modeling search context and short-term future  

interests within a single search session. User is at . 

Accurate understanding of current interests and prediction of fu-
ture interests are core tasks for user modeling, with a range of 
possible applications. For example, a query such as [ACL] could 
be interpreted differently depending on whether they previous 
query was [knee injury] vs. [syntactic parsing] vs. [country mu-

sic]. This contextual knowledge could be used to re-rank search 
results, classify the query, or suggest alternative query formula-
tions. Similarly, an accurate understanding of current and future 
interests could be used to dynamically adapt search interfaces to 
support different tasks. In our study we: (i) determine the fraction 
of search engine queries for which context could be leveraged, (ii) 
measure the value of different models and sources for predicting 
future interests, and (iii) investigate learning the optimal combina-
tion of query and context on a per-query basis, and use the learned 
models to improve the accuracy of our predictions. We use a log-
based methodology as logs contain behavioral evidence at scale 
and cover many classes of information needs. This is important 
since performance differences may not hold for all search tasks. 
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The remainder of this paper is structured as follows. In Section 2 
we present related work on implicit profile generation from user 
activity, on representing interests with topical categories, on query 
analysis, and on the development of predictive interest models. 
Section 3 describes how we define and construct the models de-
veloped for this study. We describe the study and the findings 
from our analysis in Section 4. We discuss findings and their im-
plications in Section 5 and conclude in Section 6. 

2. RELATED WORK 
Although most search systems match user queries to documents, 
independent of the interests and activities of the searcher, there is 
a growing body of work examining how knowledge of a search-
er’s interests and search context can be used to improve various 
aspects of search (e.g., ranking, query suggestion, query classifi-
cation). User interests can be modeled using different sources of 
profile information (e.g., explicit demographic or interest profiles, 
or implicit profiles based on previous queries, search result clicks, 
general browsing activity, or even richer desktop indices). Profiles 
can be based on long-term patterns of interaction, or on short-term 
session-level patterns. Here we review prior research that exam-
ines the use of short-term implicit profiles generated using user’s 
searching and browsing actions (queries, clicks on search results, 
and subsequent navigation to other pages). Further, we focus pri-
marily on research that has used topical categories, such as the 
human-generated Web ontology provided by the Open Directory 
Project (ODP, dmoz.org), to model user interests since this pro-
vides a consistent representation for queries and Web page visits. 

Several research groups have investigated personalizing search 
results using user profiles that consist of ODP-like topic catego-
ries. In an early personalized Web search system, Outride, Pitkow 
et al. [21] used the ODP classes associated with browser favorites 
and the last 1000 unique pages to represent a user’s interests. 
They used this representation to both modify queries and re-rank 
search results. Gauch et al. [13] learned a user’s profile from their 
browsing history, Speretta and Gauch [25] built profiles using just 
the search history, and Chirita et al. [9] and Ma et al. [19] used 
profiles that user’s specified explicitly. In all cases, interest pro-
files were compared with those of search results and used to alter 
the order in which results were presented to individuals. Personal 
profiles have also been used to create personalized versions of the 
PageRank ranking algorithm for setting query-independent priors 
on Web pages [16]. Such personalized document priors can be 
combined with content match features between queries and Web 
pages for the improved ranking of Web search results. More re-
cently, Bennett et al. [5] demonstrated how category-level features 
can be used to improve search ranking in the aggregate. In that 
work categories were not used to represent user profiles, but ra-
ther to propagate user behavior for a small number of specific 
URLs that are clicked on for a query to a much larger set of URLs 
that belong to the same topical category. Similarly, Xiang et al. 
[32] developed heuristics to promote URLs with the same topical 
category if successive queries in a search session were related by 
general similarity, and were not specializations, generalizations, 
or reformulations of the previous query. 

Using the context of user activities within a search session has 
also been used to improve query analysis. Short queries are often 
ambiguous, so researchers have used previous queries and clicks 
in the same session to build a richer models of interests and im-
prove how the search system interprets users’ information needs. 
Cao et al. [7][8] represented search context by modeling sessions 

as sequences of user queries and clicks. They learned sequential 
prediction models such as hidden Markov models and conditional 
random fields from large-scale log data, and applied the models to 
query suggestion, query categorization, and URL recommenda-
tion. Mihalkova and Mooney [20] used similar search session 
features to disambiguate the current query. Although neither of 
these studies uses ODP categories, they are session-based and 
illustrate non-ranking applications of search session information. 

Finally, several research groups have developed predictive models 
of user interactions within search sessions. Early Web recommen-
dation systems such WebWatcher suggested new Web pages for 
individuals based on their recently-viewed pages [3]. Shen et al. 
[23] learned probabilistic models to predict the class (from top-
level ODP categories)of the next URL a searcher would click on. 
They compared models for individuals, groups, and aggregate 
search behavior patterns using long-term interaction patterns. The 
best predictive accuracy was obtained with individual or group 
models, but they did not explore richer combinations. Piwowarski 
and Zaragoza [22] explored three different predictive click models 
based on personalized and aggregate click information in a Web 
search setting, trying to predict relationships between queries and 
clicked documents. They built a probabilistic user-centric model, 
a group model, and a global model, and a model that combined all 
three. The best of their models was able to achieve either moder-
ate prediction accuracy (50% of the clicks) with high recall (75% 
of the time), or very high accuracy of 98% but low recall (5% of 
the time). White et al. [30] compared the value of a variety of 
sources of contextual information for predicting future interests at 
different time scales (one hour, one day, or one week). The best 
accuracy was obtained when recent actions (the so-called interac-

tion context) were used to predict interests in the following hour. 
Bailey et al. [4] focused on assigning ODP labels to long and rare 
(previously-unseen) Web search engine queries. They used labels 
assigned to pages on browse trails extracted from toolbar logs 
following seen queries and matched the unseen queries to them.  

The research presented in this paper differs from the previous 
work reviewed above in several important ways. First, we exam-
ine contexts from several sources: queries, URLs visited (from 
search engine results pages and in subsequent Web browsing), and 
learn optimal source combinations. Second, we focus on develop-
ing models capable of accurately predicting the future interests in 
a search session, and explore precision/coverage tradeoffs. Such 
predictive models can be used for a wide variety of applications, 
including supporting pro-active changes to the interface to empha-
size results of likely interest or to suggest contextually-relevant 
query alternatives, as well as more traditional applications to rank-
ing and filtering. Finally, we base our analyses on a large set of 
user searching and browsing sessions obtained from log data, thus 
addressing scale and representativeness issues. 

3. MODELING SEARCH ACTIVITY 
The scenario that we model in this investigation is that of a Web 
searcher who has just issued a query to a search engine. It is at 
this point that the engine may leverage the recent search activity 
of the user to augment the current search query with a more so-
phisticated representation of their search intent. Important ques-
tions around which types of search activity sources can be used to 
build contextual models—as well as how and when to combine 
these sources—are answered in the study presented in this paper. 
We begin by describing the data used to both model search activi-
ty and evaluate the predictive performance of the models. 



3.1 Data 
The primary source of data for this study was a proprietary data 
set containing the anonymized logs of URLs visited by users who 
consented to provide interaction data through a widely-distributed 
browser plugin. The data set contained browser-based logs with 
both searching and browsing episodes from which we extract 
search-related data. These data provide us with examples of real-
world searching behavior that may be useful in understanding and 
modeling search context. Log entries include a timestamp for each 
page view, and the URL of the Web page visited. To remove vari-
ability caused by geographic and linguistic variation in search 
behavior, we only include log entries generated in the English-
speaking United States locale. The results described in this paper 
are based on URL visits during the last week of February 2010 
representing billions of Web page visits from hundreds of thou-
sands of unique users. From these data we extracted search ses-

sions on the Bing Web search engine, using a session extraction 
methodology similar to [29]. Search sessions begin with a query, 
occur within the same browser and tab instance (to lessen the 
effect of any multi-tasking that users may perform), and terminate 
following 30 minutes of user inactivity. We use these browser-
based logs rather than traditional search-engine logs since they 
provide access to all pages visited in the search session preceding 
and succeeding the search query, information that is important for 
our later analyses. The median session length was 19 actions (que-
ries and Web page views) (mean=29 actions). The median dura-
tion of a search session was 10 minutes 9 seconds (mean=8 
minutes 32 seconds). To augment the browser-based logs, we also 
mined Bing search engine logs to obtain the URLs of the top-ten 
search results returned for each query (to build query models). 

3.2 ODP Labeling 
We represented context as a distribution across categories in the 
ODP topical hierarchy. This provides us with a consistent topical 
representation of queries and page visits from which to build our 
models. ODP categories can also be effective for reflecting topical 
differences in the search results for a query [5] or a user’s interests 
[30]. Given the large number of pages present in our log data, we 
used automatic classification techniques to assign an ODP catego-
ry label to each page. Our classifier assigned one or more labels to 
the pages based on the ODP using a similar approach to Shen et 
al. [23]. In this approach, classification begins with URLs present 
in the ODP and incrementally prunes non-present URLs until a 
match is found or miss declared. Similar to [23], we excluded 
pages labeled with the “Regional” and “World” top-level ODP 
categories, since they are location-based and are typically unin-
formative for constructing models of user interests. To lessen the 
impact of small differences in the labels assigned, we also filtered 
to only use 219 categories at the top two levels of the ODP hierar-
chy, referred to as  hereafter. The coverage of the resulting ODP 
classifier with URL back-off was approximately 60%. To improve 
the coverage of the classifier we combined it with a text-based 
classifier, described in [5], that uses logistic regression to predict 
the ODP category for a given Web page. When optimized for the 

 score in each ODP category, the text-based classifier has a 
micro-average  of 0.60. Predicted ODP category labels from 
this classifier were available for many pages in the Bing search 
engine index. For URLs where only one classifier had labels, the 
most frequent label (for ODP lookup) or the most probable label 
(for the text-based classifier) was used. For URLs where both 
classifiers had a label, the label was determined by first looking 
for an exact match in the ODP, then in the classified index pages, 

and then incrementally pruning the URL and checking for a cate-
gory label in the ODP or in the classified index pages. This classi-
fier combination led to coverage exceeding 80% across all URLs 
in our set. We did not attain 100% coverage since some URLs 
were in the hidden Web and not in the Bing index (e.g., because 
logins are required, the pages are dynamically generated, etc.). 

3.3 Sources and Source Combinations 
We use three sources to build models from search sessions: 

1. Query: ODP labels automatically assigned to the top-ten search 
results for the query returned by the engine used in our study. 
Label assignment is described in more detail in Section 3.4. 

2. SERPClick: ODP labels automatically assigned to the search 
results clicked by the user during the current search session. 

3. NavTrail: ODP labels automatically assigned to Web pages that 
the user visits following a SERP click. 

By examining the effectiveness of interest models built with these 
sources, we can help determine their relative value and provide 
insight into which sources are the most important for search en-
gines to represent to attain good prediction performance. For ex-
ample, queries and SERP clicks are easy for search engines to 
capture, but post-SERP capturing browsing behaviors involves the 
deployment of client-side software such as a Web browser plugin. 

In this study, we experiment with building models of the search 
context for the current query using: (i) previous queries only; (ii) 
previous search engine activity only (previous queries and SERP 
clicks), and; (iii) all previous activity (previous queries, SERP 
clicks, and post-SERP Web page visits). We also compare each of 
these source combinations against the current query alone. 

3.4 Model Definitions 
Three models were constructed to represent users’ short term 
interests: query (the current query), context (queries and Web 
pages viewed prior to the current query), and intent (a weighted 
combination of current query and context). The sequence of ac-
tions following the current query in the session is used to develop 
the relevance model used as ground truth. Note that the “models” 
are different from the “sources” described in the previous section. 
The sources determine the information used in building the mod-
els. The decision about which sources are used in constructing the 
models can be made based on availability (e.g., search engines 
may only have access to queries and SERP clicks) and/or desired 
predictive performance (more sources may lead to more accurate 
models, but may also contain more noise if searchers deviate from 
a single task). All models represent user interests as a probability 
distribution across the ODP labels in . In the remainder of this 
subsection we provide more details on each of the models. 

3.4.1 Query Model ( ) 
Given the method for assigning ODP category labels to URLs, we 
assigned labels to a query as follows. For each query, we obtain 
the category labels for the top-ten search results returned by the 
Bing Web search engine at query time. Probabilities are assigned 
to the categories in  by using information about which URLs are 
clicked for each query. We first obtain the normalized click fre-
quencies for each of the top-ten results from search-engine click 
log data gathered during all of 2009, and computed the distribu-
tion across all ODP category labels. Search results without click 
information are ignored in this procedure. ODP categories in  
that are not used to label top-ranked results are assigned the prior 
probabilities for query models, as described in Section 3.5. 



3.4.2 Context Model (X) 
The context model is constructed based on actions that occur prior 

to the current query in the search session. Actions comprise que-
ries, Web pages visited through a SERP click, or Web pages visit-
ed on the navigational trail following a SERP click. A query mod-
el is created for each previous query in the context using the 
method described in the previous subsubsection. A model for each 
Web page is created using the ODP category label assigned via 
the strategy described earlier (i.e., first check for exact match in 
ODP, then check for exact match with logistic regression classifi-
er, etc.). The weight attributed to the category label assigned to 
the page is based on the amount of time that the user dwells on the 
page. Dwell time has been used previously as a measure of user 
satisfaction with Web pages [1][11]. In a similar way, we assume 
that if a user dwells on a page for longer than 30 seconds, then the 
page contains useful content. However, instead of using a binary 
relevant/non-relevant threshold of 30 seconds we used a sigmoid 
function to smoothly assign weights to the categories. Function 
values ranged from just above zero initially to one at 30 seconds. 

In addition to varying the probability assigned to the class based 
on page dwell time, we also assigned an exponentially-decreasing 
weight to each action as we move deeper into the context. That is, 

pre-query actions were weighted according to , where  
represents the number of actions before the current query. A simi-
lar discount has been applied in previous work on ostensive rele-
vance [6]. Using this function, we could assign the action imme-
diately preceding the current query a weight of one and down-
weight the importance of all preceding session actions, such that 
more distant events received lower weights. This is supported by 
previous work which suggests that the most recent action is most 
relevant for predicting the next action (e.g., [10][23]). All page 
and query models in the context had their contribution toward the 
overall context model weighted based on this discount function. 
All of these models were merged and their probabilities normal-
ized so that they summed to one (after priors were assigned to 
unobserved categories). The resultant distribution over the ODP 
category labels in  represents the user’s context at query time. 

3.4.3 Intent Model ( ) 
The intent model is a weighted linear combination of the query 
model (for the current query) and the context model (for the pre-
vious actions in the search session). Since this model includes 
information from the current query and from the previous actions, 
it can potentially provide a more accurate representation of user 
interests than the query model or the context model alone. The 
intent model is defined as: 

, where  (1) 

where , , and  represent the intent, context, and query models 
respectively, and  represents the weight assigned to the context 
model. When combining the query and context models to form the 
intent model, by default  = 0.5. However, as we will show, the 
optimal value of  varies per query and can be accurately predict-
ed using features of the query and its activity-based context. 

3.4.4 Relevance Model or Ground Truth ( ) 
The relevance model contains actions that occur following the 

current query in the session. This captures the “future” as shown 
in Figure 1 and represents the ground truth for our predictions. 
The relevance model comprises a probability distribution over  
and is constructed in a similar way to the context model. The only 
difference between how the two models are built is that the rele-

vance model considers future actions rather than past actions. In 
the relevance model, we weight the action immediately following 
the query—typically another query or a SERP click—most highly, 
and decrease the weight rapidly for each succeeding action in the 
session (using the same exponential decay function as the context 
model). This regards the next action as more important to the user 
than the other actions in the remainder of the session. This seems 
reasonable as the next action may be most closely related to their 
interests for the search query. We use this relevance model as the 
ground truth for measuring the accuracy of our predictions of 
short-term user interests and for learning the optimal combination 
of query and context for a query. User behavior has been shown to 
be a useful measure of search success in previous work [2][14]. 
Since the relevance model is automatically generated, it can be 
used to evaluate performance on a large and diverse set of queries, 
but may contain noise associated with variance in search behavior. 

3.5 Assigning Model Priors 
To handle missing values, each of the interest models was as-
signed a prior distribution across  based on ODP categories as-
signed to URLs in a held out set of 100,000 randomly-selected 
search sessions from our data set, hereafter referred to as . In 
this set the number of sessions from any single user was restricted 
to ten. Limiting the number of sessions per user lessened the like-
lihood that highly-active users would bias our sample. Priors were 
tailored to the sources being used to construct each interest model. 
For example, the query models were always initialized with the 
query prior (generated from the ODP categories labels assigned 
across all URLs appearing in search result lists in ), whereas a 
context model’s priors are based on all sources used to build the 
model (e.g., all search engine activity in ). 

4. STUDY 
We now describe our study, beginning with research questions. 

4.1 Research Questions 
Three research questions drove our investigation: 

1. What fraction of search engine queries could be impacted by 
the use of context information? 

2. What is the predictive accuracy of the user interest models gen-
erated from the current query, context, and intent? What is the 
effect of varying the source of context information on predic-
tive accuracy? 

3. Can we learn how best to combine query and context models? 

In the remainder of this section we answer each question in turn, 
beginning with the extent of the opportunity offered by context. 

4.2 Extent of Context Opportunity 
We first investigate the potential opportunity of using short-term 
session context information for interpreting the current query. To 
do so we selected a random sample of one hundred thousand 
search sessions, hereafter referred to as , from the data set de-
scribed in Section 3.1 with the same ten-session-per-user limit as 
in . In , there were a total of 325,271 queries. Of these que-
ries, 224,634 (69%) were not reached through session-level revis-
itation (e.g., through the browser “back” button). This is important 
in estimating the opportunity for using contextual information, 
since it focuses attention on those queries that users actually sub-
mitted. For queries that are repeated using the back button, search 
engines would probably not want to update search results when 
users returned to them. Indeed, previous work has shown that care 
should be taken when adapting the content or the ordering of 



search results for repeat queries as this could lead to user confu-
sion and frustration [27]. We therefore focus on intentionally-
issued search queries in the remainder of our analysis. 

Around 40% of the sessions in  contained multiple queries and 
around 60% of queries had at least one preceding query in the 
search session, providing an opportunity to generate a context 
model. Given an ideal interest model construction method that 
could build query/context/intent models for all encountered con-
texts, we have opportunity to improve the search experience for a 
significant fraction (60%) of the search traffic that search engines 
receive.1 This is important, since implementing support for con-
text modeling at scale is a potentially costly undertaking for 
search engine companies, who must also consider the investment 
in infrastructure required to serve such context rapidly for many 
millions of search queries daily. The simple label assignment 
methods described in Section 3.2 cover almost 80% of all con-
texts, so we cover roughly 50% of all queries in our experiments. 

4.3 Prediction Accuracy of Models & Sources 
In the previous section we showed that context can cover a signif-
icant portion of search engine queries. In this section, we focus on 
how well each of our models – current query only ( ), context 
only ( ), and intent ( ) – predicts the future short-term interests of 
the current user, represented by the relevance model or ground 
truth ( ). The advantage of using logs for this study is that we can 
observe future actions and construct the relevance model automat-
ically from them. As part of the analysis, we also vary the source 
of information used to construct the context model: either previ-
ous queries, previous queries and SERP clicks, or all previous 
actions. In building the intent models in this section we set the 
context weight ( ) to 0.5. For this analysis we used the same set 
of sessions used in the previous section ( ). Parametric statistical 
testing is performed where appropriate with alpha set to .05. 

To evaluate the predictive accuracy of the model sources we used 
the  measure. This measure computes the harmonic mean of 
precision and recall, and has been used successfully in a number 
of search scenarios including prior work on evaluating context 
sources [30]. We prefer  to alternatives such as Jensen-Shannon 
divergence since  is easily interpretable and makes model com-
parisons simpler.  is defined in the standard way as: 

 (2) 

where we define precision and recall as: 

                                                                 
1 Note that it may also be possible to create contexts from preced-

ing actions beyond search sessions (e.g., previous Web page vis-
its alone). See the work of White and colleagues [30] for details. 

,  
 

(3,4) 

where  is the set of instantiated labels in the model being tested 
and  is the set of instantiated labels in the relevance model. 
Label instantiation occurs when category labels are assigned to a 
query or a Web page as described in Section 3.4. When either  
or  are empty, precision and recall equal zero. We use  to 
measure the predictive accuracy of each of the query, context, and 
intent models. For each model, the recall depth is computed based 
on the number of categories which were instantiated in building 
the relevance model comprising all future session activity. 

In order to compare the different models on the same queries, we 
focus on queries for which we could construct a model for the 
current query, its context, and its future (for relevance), for all 
context sources. This equated to 30% of the queries in . We 
iterated over each query, and computed the models per the ap-
proach described earlier and calculated how accurately the models 
predicted the future (using the  score). The findings of this 
analysis across all queries in our set are summarized in Table 1. 
Note that the contribution of the query model (column ) is the 
same for all sources because no context is used. The findings un-
der “Accuracy” in the table suggest that: (i) leveraging any con-
text (columns  and ) yields significant prediction accuracy gains 
over using no context ( ), in terms of predicting the rele-
vance model; (ii) leveraging more sources yields more accurate 
predictions (improved predictions for both  and  as more con-
text sources are included), and; (iii) the context ( ) and intent ( ) 
models do not differ in terms of overall accuracy. All observed 
differences in the  scores between the three models were statis-
tically significant using one-way analyses of variance (ANOVA) 
(all (2,122154)=6.91, all <.001).  

In addition to comparing the overall  scores, we also computed 
the fraction of queries for which each model outperformed the 
other models and the fraction of queries for which each source 
outperformed the other sources. This analysis allows us to identify 
queries for which each of the models provides best performance. 
The percentage of queries for which each of the models and con-
text sources wins is shown in Table 1 under “Percentage of que-
ries best.” Only queries where one model / context source was a 
clear winner are included under this heading in the table. Queries 
with ties, where all models failed to predict (around 10% of the 
sample used) or two of more models / context sources had the 
same  score (around 30% of queries) are not included. The 
columns , , and  show the percent of queries for which that 
model for each context source – e.g., for the Query source,  is 
best on 18% of queries,  on 25%, and  on 22%. The final col-
umn shows differences for sources for the intent model. Here we 
see that the richer the context the better: the Query source is best 

Table 1. Prediction accuracy of the models and the percentage of queries for which each model or source performed best. 

Context source 

Accuracy ( ) Percentage of queries best 

Models Between models Between  

sources 

(intent only) 
      

None (i.e., current query only) 0.39 − 0.39 100% − 100% 15% 

Query (i.e., all previous queries) 0.39 0.42 0.43 25% 18% 22% 19% 

Query + SERPClick (i.e., all previous queries and result clicks) 0.39 0.46 0.46 30% 16% 25% 22% 

Query + SERPClick + NavTrail (i.e., all previous actions) 0.39 0.50 0.49 34% 11% 30% 26% 

 



on 19% of the queries, the Query + SERPClick source is best for 
22% of queries, and all sources are best for 26% of queries. 

At least two observations can be made from the findings. First, as 
expected, there are sets of queries for which each of the models 
performs best, and second, there are queries for which each of the 
model sources performs best. To understand more about which 
queries each of models performed best on we visually inspected a 
sample of queries and their sessions to understand why the model 
or source performed so well. The findings of our analysis revealed 
that in cases where the current query model ( ) wins, the query 
either has very specific search intent (e.g., [espn], [webmd], [call 

of duty 4 demo]), or is in situations where the query represents the 
first action after a noticeable shift in topical interests within the 
search session. In cases where the context model ( ) wins, the 
query is a continuation of constant intent, the query is ambiguous 
(e.g., [amazon]) or is detached from the search session (e.g., que-
ry for [facebook] during a search session seemingly about Ama-
zonian rainforests). In cases where the intent model ( ) wins, there 
is typically a consistent intent throughout the session. 

To detect shifts in interests, we computed the cross entropy ( ) 
of the query model versus the context model. Cross entropy is an 
information theoretic measure of the average number of bits need-
ed to identify an event from a set of possibilities given two distri-
butions. It has been used in previous work to compare distribu-
tions in order to make ranking decisions [5]. It is defined as: 

 (5) 

where  and  represent the current query model and the context 
model respectively, and  and  represent the probability as-
signed to each of the category labels ( ) in the current query and 
context models. In the case of comparing query and context, the 
interpretation would be the number of bits on average to encode 
the class of query that is actually issued next given predictions 
regarding what class would be issued using the previous context. 

In situations where the entropy between the query model and the 
context model is low, we would expect the query to be a continua-
tion of the same intent (and perhaps more weight should be placed 
on the context). In cases where it is high, we would expect there 
to be a shift in intents (and perhaps more weight should be placed 
on the current query). The Pearson’s correlation coefficient ( ) 
between the cross entropy and the  scores for the context and 
the query models were 0.63 and 0.58 respectively, suggesting that 
difference between the query and the context may be important in 
determining when contextual information should be leveraged. 

To gain insight into the breadth of interests associated with a que-
ry, we computed the click entropy of the query. Click entropy has 
been used in previous work [28] to gauge the variability in intents 
associated with a query, manifested as clicks on search results. 
Low click entropy for a query suggests that searchers generally 
target a single result URL. In contrast, a query with high click 
entropy indicates that a range of URLs are targeted. Interestingly, 
for queries in which the context and intent models outperformed 
the query models, the click entropy of the query was significantly 
higher (2.48 versus 2.12). This is consistent with the intuition that 
for ambiguous queries, knowing more about previous session 
context can be helpful. It also seems that query click entropy pro-
vides insight into when more weight should be placed on context, 
perhaps to help disambiguate search results of ambiguous queries. 
We will now explore varying the context weight for each query. 

In our analysis thus far we have assumed that the weight assigned 
to the context in the intent model is always 0.5. However, as our 
findings in this section, and the findings of previous work in this 
area [32], have suggested, it is unlikely that the same context 
weights should be used for all queries. In the next section we pre-
sent an investigation of whether we can automatically learn the 
optimal context weight on a per-query basis.  

4.4 Learning Optimal Context Weights 
To learn the optimal weight to assign to context when combining 
the context model and the query model we identified the optimal 
context weight ( ) for each query on a held out training set, creat-
ing features for the query and the context that could be useful in 
predicting , and then learning  using those features. In this 
section we cover all three of these steps, beginning with the opti-
mization task. We also present findings on improvements in pre-
diction accuracy obtainable by learning , and results of predic-
tion experiments using different model sources. 

4.4.1 Determining the Optimal Context Weight 
The goal of the optimization is to determine the context weight 
that minimizes the difference in distributions between the intent 
and the relevance models. To construct a set for learning, we as-
sume therefore that we are given a set of queries with their con-
text, query, and relevance models collected from observed session 
behavior. We first need to convert the knowledge of the future 
represented in the relevance model to an optimal context weight 
that we then use for training a prediction model. The function that 
we wish to minimize in this scenario is the cross-entropy, as de-
fined in Equation 5, between the intent model and the relevance 
model. In this case, the reference distribution is the relevance 
model, and the cross-entropy takes its minimal value (the entropy 
of the relevance distribution) when the intent model distribution is 
equal to the relevance distribution. The objective function used is: 

 

 
s.t.  

(6) 

Here , , and  represent the probability assigned to the th 

category by relevance, context, and current query models, respec-
tively. Similarly,  is the corresponding intent probability 
using w as the context weight. The first term in this equation is 
simply the cross-entropy between the relevance and intent distri-
butions. The second term is a regularizer that penalizes deviations 
from w=0.5. It is essentially a Gaussian regularization applied 
after a logit transform (which is monotone in  and symmetric 
around =0.5). The regularizer also has the negligible effect of 
constraining the optimum to lie in the open interval (0,1) instead 
of the closed interval [0,1]. After squaring then, the regularization 
term is convex. Since cross-entropy minimization is also known to 
be convex, for  > 0, the resulting problem is convex and can be 
minimized efficiently to find an optimal value of . Besides keep-
ing  closer to 0.5, the regularizer is helpful in that without it, 
small deviations in the distributions (e.g., due to floating point 
imprecision) can force the optimal weight to 0 or 1 although the 
value of the objective is essentially (near) flat. This adds a source 
of unnecessary noise to learning and is easily handled through 
regularization. For our experiments, we set , and further 
exploration of this parameter remains as future work. 



To create a training set, we use the query, context, and relevance 
models to compute the optimal context weight per query by min-
imizing the regularized cross-entropy for each query independent-
ly. Note that the relevance model is implicitly the labeled signal 
which optimization converts to a “gold-standard” weight to be 
used in learning and prediction.  

4.4.2 Generating Features of Query and Context 
At query time, a search engine has access to a large number of 
features about the query and the activity-based search context that 

could be useful for learning the optimal context weight. Table 2 
lists the features that were used in our predictions. Features were 
divided into three classes: Query, capturing characteristics of the 
current query and the query model, including log-based features 
based on search logs of the Bing search engine for the last week in 
January 2010, italicized in Table 2; Context, capturing aspects of 
the pre-query interaction behavior as well as features of the con-
text models themselves, and QueryContext, capturing aspects of 
how the query model and context model compare. 

Table 2. Features used in predicting optimal context weight. Log-based features for the query are italicized. 

Feature Feature description 

Query class 

QueryLength  Number of characters in query 

QueryWordLength  Number of words in query 

AvgQueryWordLength Average length of query words 

AvgClickPos Average SERP click position for query 

AvgNumClicks Average number of SERP clicks for query 

AvgNumAds Average number of advertisements shown on the SERP for query 

AvgNumQuerySuggestions Average number of query suggestions shown on the SERP for query 

AvgNumResults Average number of total search results returned for the query 

AbandonmentRate Fraction of times query issued and has no SERP click 

PaginationRate Fraction of times query issued and next page of results requested 

QueryCount Number of query occurrences 

HasDefinitive True if a single best result for the query is in the result set (usually for navigational queries) 

HasSpellCorrection True if search engine spelling correction is offered for query 

HasAlteration True if query is automatically modified by engine (e.g., stemming) 

FracQueryModelNotPrior Fraction of all categories in the query model that are instantiated 

QueryEntropy Entropy of the query model 

ClickEntropy Click entropy of query based on distribution of result clicks 

QueryJensenShannon Jensen-Shannon divergence between the query model and the previous query model in session 

Context class 

NumActions Number of queries and page visits (excludes current query) 

NumQueries Number of queries (excludes current query) 

Time Time spent in session so far 

NumSERPClicks Number of search results clicked 

NumPages Number of non-SERP pages visited 

NumUniqueDomains Number of unique domains visited 

NumBacks Number of session page revisits 

NumSATDwells Number of page dwells exceeding a 30-second dwell time threshold 

AvgQueryOverlap  Average percentage query overlap between all successive queries 

FracContextModelNotPrior Fraction of all categories in the context model that are instantiated 

LastContextWeight Previous estimate of optimal context weight in the session. Note: Uses previous query model, previous 
context model, and actions between previous query and current query as relevance model (ground truth) 

ContextEntropy Entropy of the context model 

ContextEntropyByNumAct Entropy of the context model divided by the number of actions in session so far 

ContextJensenShannon Jensen-Shannon divergence between the context model and the previous context model in session 

QueryContext class 

QueryContextCrossEntropy Cross entropy between the query model and the context model 

ContextQueryCrossEntropy Cross entropy between the context model and the query model 

JensenShannonDivergence Jensen-Shannon divergence between the query model and the context model 

 



The broad range of features used enabled us to capture many as-
pects of search activity. These features were generated for each 
session in our set and used to train a predictive model to estimate 
the optimal weight to be placed on the context when building the 
intent model. We now describe the experiments performed to 
evaluate our predictions of the optimal context weight. 

4.4.3 Predicting the Optimal Context Weight 
We used Multiple Additive Regression Trees (MART) [12] to 
train a regression model to predict the optimal context weight. 
MART uses gradient tree boosting methods for regression and 
classification. MART has several strengths, including model in-
terpretability (e.g., a ranked list of important features is generat-
ed), facility for rapid training and testing, and robustness against 
noisy labels and missing values, that make it attractive for this 
task. We selected a new set of one hundred thousand search ses-
sions with no overlap with the sessions used in the analysis pre-
sented previously in this paper (referred to as ). From these 
sessions we selected around 45,000 queries for which we could 
construct a query, context, intent, and relevance model. We used 
all search session activity (queries, SERP clicks, and post-SERP 
Web page visits) since models constructed from those sources 
yielded the best predictive performance in our earlier analysis and 
we wanted to see how well we could do given this rich source of 
information. We used 60% of those queries for training, 20% for 
validation, and 20% for testing, and performed ten-fold cross 
validation to improve result reliability. Note that in constructing 
the folds, we split by session so that all queries in a session are 
used for either training, validation, or testing. We do not allow 
queries from the same session to be used in different phases as 
this may bias our experiments. Pearson’s correlation ( ) and root 
mean squared error ( ) were used to measure our perfor-
mance at predicting optimal . Correlation measures the strength 

of association between predicted and actual on a scale from −1 to 
1, with one indicating a perfect correlation and zero indicating no 
correlation.  is the square root of the mean of the squared 
deviations between the actual and predicted values and resides 
between zero and one. The ideal value of  is zero, with 
larger values showing more errors. Following our analysis, the 
average obtained  across all experimental runs was 0.85 and the 
average  across all runs was 0.15.2 The weights assigned by 
the model to the top-15 features are shown in Table 3, normalized 
relative to the most predictive, QueryContextCrossEntropy. 

From Table 3 it appears that the most performant features relate to 
the information divergence of the query models and the context 
models. This suggests that the strength of the relationship between 
the current query and the context is an important indicator of how 
much weight to assign to the context. Also important are features 
of the current query only and its context only. 

In Figure 2 we plot the predicted and optimal context weight and 
show the line of best fit between them for a representative cross-
validation run. Each point on the plot is a search query. From the 
figure it appears that we perform well when predictions place a 
large amount of weight on the context. Indeed, although the aver-
age true optimal  across all queries is 0.69, the average predicted 

 is 0.75, suggesting that our predictions may overweight context. 

 
 

                                                                 
2 For reference, the average performance of the model trained 

only on search engine interactions was =0.75, =0.19. 

Table 3. Feature importance. 

Feature Class Importance 

QueryContextCrossEntropy QueryContext 1.00 

JensenShannonDivergence QueryContext 0.86 

ContextEntropy Context 0.69 

ContextQueryCrossEntropy QueryContext 0.46 

ContextJensenShannon Context 0.19 

QueryEntropy Query 0.18 

LastContextWeight Context 0.17 

QueryCount Query 0.14 

NumActions Context 0.12 

FracQueryModelNonPrior Query 0.12 

FracContextModelNonPrior Context 0.12 

NumQueries Context 0.11 

NumSERPClicks Context 0.05 

QueryJensenShannon Query 0.04 

ClickEntropy Query 0.04 
 

 

Figure 2. Predicted context weight vs. optimal context weight. 

Prediction error was highest for those queries in the top-left corner 
of the figure. Inspection of the queries revealed that they were rare 
queries or contained typographical errors, which meant that we 
could not generate some of the log-based query features such as 
QueryCount, which from Table 3, appear to be important in our 
predictions. Prediction errors were also larger for queries at the 
beginning of search sessions, meaning that there was limited con-
textual information was available to build interest models.  

In the next section we apply the estimates of the optimal context 
weight to the prediction of future interests tackled in Section 4.3. 

4.4.4 Applying Optimal Context Weight Predictions 
Given that we are able to predict the optimal context weight with 
good accuracy, we now investigate the impact on predictive accu-
racy of utilizing the predicted optimal context weight in the intent 
model when combining the query model and the context model. 
To do this, we used a model trained on all sessions in , created 
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a test set of 100,000 randomly-chosen search sessions (not in  
or  and limited to ten sessions per user), and chose the optimal 
context weight for queries where could construct the models. 

For each query in the test set, we then constructed the intent mod-
el with the predicted context weight ( ) and computed the  
score between the intent model and the relevance model for each 
query. In Table 4 we present the average  score using the per-
query estimates computed from our predictive model and the av-
erage score assuming that the context and query models each get a 
weight of 0.5, the optimal combination across all queries (com-
puted by averaging  over all sessions in ). To provide an up-
per bound for , we computed the score that could be obtained if 
we used an oracle, the optimal  for each query in the test set. 
This is shown in the last row of the table. The oracle’s  score is 
not one because it is based on the optimization described earlier, 
and may contain noise. These scores give us a sense for the gain 
to be obtained from estimating the context weight per query and 
how much lift we would get if we just applied a global optimum 
(derived by averaging the optimal values over all queries), remov-
ing the need for engines to deploy a run-time classifier. 

Table 4. Predictive accuracy for heuristic, learned,  

and oracle context weights. 

Context weight source  Percentage of oracle 

Default (  = 0.5) 0.49 75.3 

Global optimum (  = 0.75) 0.52 80.0 

Per-query optimum 0.56 86.1 

Oracle 0.65 − 
 

The findings suggest that the global optimum helps to obtain a 
performance that is close to the oracle (80%), but the per-query 
optimum, based on features of the query, the context, and their 
combination, achieves over 85% of the predictive accuracy of the 
oracle. Both the global optimum and per-query optimum led to 
significant improvements in predictive performance over the de-
fault, using paired -tests (global: (44873)=2.58, <.01, per-
query: (44873)=2.87, <.01). These findings suggest significant 
benefit from optimizing context weights, even if search engines 
can only use the global optimum due to infrastructure constraints. 

4.4.5 Varying Context and Relevance Information 
To evaluate how the amount of context and relevance information 
available to build the predictive model influences its prediction 
accuracy, we built models using different amounts of context and 
relevance. In building the context model we used either all previ-
ous actions or the most recent previous action. In building the 
relevance model we use all future actions, the next action, or the 
last action in the session. Table 5 shows the average performance. 

Table 5. Average predictive performance by model source. 

Relevance  

model source 

Context model source 

All actions Previous action 

All actions =0.85, =0.15 =0.78, =0.19 

Next action =0.83, =0.16 =0.77, =0.19 

Last action =0.83, =0.16 =0.76, =0.19 
 

We analyzed the models using the same methodology described in 

Section 4.4.3, ran a 3 × 2 ANOVA with relevance model source 
and context model source as the factors, and examined the signifi-
cance of pairwise differences using Tukey post-hoc testing. We 

found that when context models were built from only the previous 
action, performance was significantly lower than when all previ-
ous actions were used (all <.01). This suggests that additional 
preceding actions adds predictive signal. We found no significant 
difference for any source when varying the amount of information 
used to generate the ground truth (first subsequent action, last 
action in session, or all actions), all ≥.12. It appears that the 
source of relevance information has only a marginal impact on 
how well the models estimate the weight to assign to the context.  

In this section we demonstrated predictive value in context, varia-
tion by source and by model, and have shown that we can learn to 
predict optimal context weights with good accuracy.  

5. DISCUSSION AND IMPLICATIONS 
Through a log-based analysis, we quantified the opportunity for 
using activity-based search context, compared the accuracy of 
interest models of the current query, context, and their combina-
tion, and learned optimal weights to combine the query and con-
text models on a per-query basis. These findings can inform the 
design of search systems to leverage contextual information to 
better understand, model, and serve searchers’ information needs. 

Context models based on recent search activity present significant 
opportunity to improve search performance. We showed that over 
60% of queries had at least one preceding query. The simple 
method we used for generating category labels covers almost 80% 
of all contexts, meaning that we can potentially improve engine 
responses for roughly 50% of the queries in our experiments. 

We found that using context led improved the accuracy of predic-
tions of future interests over the current query alone. This is in 
line with previous work, which has also demonstrated the benefits 
of contextualized search [24][26]. Further, leveraging increasing-
ly-richer sources of contextual information (queries, SERP clicks, 
and post-SERP Web page visits) improved predictive accuracy. 
We showed that there are distinct query sets for which different 
interest models and sources perform most effectively, suggesting 
that query information is likely important in selecting sources 
and/or model weights. Finally, we showed improvements in pre-
dictive accuracy by learning per-query context weights.  

By representing short-term session-contexts we are able to signifi-
cantly improve our ability to model user intent. The richer and 
more accurate predictive models we developed can be used to 
interpret the query for a variety of search-related applications, 
including interface changes to emphasize results of likely interest, 
to suggest contextually-relevant query alternatives, or for ranking 
and filtering. Category-level information has already been shown 
to improve result relevance for just the current query [5]. A direct 
extension of our work would be to use the context model (as-
signed a weight based on features of the query and context) to 
improve the quality of search engine result rankings, by promot-
ing results that are consistent with the inferred user intent. 

There are several directions for improving model development. 
The gains in the optimal context weight prediction performance 
when moving from previous action only to all preceding actions 
suggests value in using multi-action context. To reduce noise from 
the context, we need to experiment with ways to select only rele-
vant actions and explore other context decay functions. The priors 
used in the models for each of the sources were based on the be-
havior of many users across many different queries. Personalized 
model priors based on a user’s search history could also be used 
so that predictions can be tailored to topics that interested them. 



Further work is needed to verify the accuracy of the relevance 
models based on future actions. Manual labeling of a random 
sample of sessions (going beyond the visual inspection performed 
in this study) may be necessary to create a reliable ground truth 
and ensure that our session demarcation (which was temporally-
based not topic-based) is accurate. These labels could provide an 
additional source of ground truth information for learning the 
optimal combination of query and context and in evaluating pre-
dictions or result rankings generated using such a combination. 
More generally, there are important opportunities to develop new 
context-aware evaluation methodologies. Evaluation of search 
results is typically based on the query alone, and new judgment 
protocols and evaluation metrics (e.g., [16]) are necessary to also 
consider search context. The framework we have developed to 
represent and predict user interests could also be generalized by 
using other context features and alternative outcome measures.  

6. CONCLUSIONS 
In this paper we have described a study investigating the effec-
tiveness of activity-based context in predicting users’ search inter-
ests. We demonstrated that context can be captured and modeled 
for a significant portion of search queries, suggesting that there 
lies significant opportunity in leveraging contextual information. 
We explored the value of modeling the current query, its context, 
and their combination (which we refer to as intent), and different 
sources of context (search queries, SERP clicks, and post-SERP 
navigation). Our findings showed that intent models developed 
from many sources perform best overall. In addition, we found 
that all models and context sources have some set of queries for 
which they provide the best performance. Thus, we also devel-
oped techniques to learn the optimal combinations of query and 
context models per query. Our findings demonstrate significant 
opportunity in leveraging short-term contextual information to 
improve search systems. Future work involves constructing more 
sophisticated user interest models, and the development and de-
ployment of search engine enhancements to ranking and result 
presentation that leverage context information effectively. 
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