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ABSTRACT
Many web documents are dynamic, with content changing
in varying amounts at varying frequencies. However, current
document search algorithms have a static view of the doc-
ument content, with only a single version of the document
in the index at any point in time. In this paper, we present
the first published analysis of using the temporal dynam-
ics of document content to improve relevance ranking. We
show that there is a strong relationship between the amount
and frequency of content change and relevance. We develop
a novel probabilistic document ranking algorithm that al-
lows differential weighting of terms based on their tempo-
ral characteristics. By leveraging such content dynamics we
show significant performance improvements for navigational
queries.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Miscella-
neous

General Terms
Algorithms, Experimentation

Keywords
Web search, versioned documents, temporal change

1. INTRODUCTION
Web documents are dynamic. Newspaper homepages such

as the New York Times1 change several times a day, mar-
ketpace sites such as Craigslist2 can change many times an
hour and blogs are updated with varying frequencies when
new posts and comments are added. Some of these changes
are substantial and significant for information seekers – new

1http://nytimes.com
2http://craigslist.org
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stories appearing on a homepage or new comments to a blog
post. Others hold less interest for those looking for infor-
mation – visitation counters, advertisement content, or for-
matting changes have little impact on the page content.

Currently, document ranking algorithms only have a static
view of the page content. In this work we explore the in-
teraction between the dynamics of web documents and rel-
evance ranking, using document representations that view
a document as a dynamic entity. We focus specifically on
navigational searches, where there is very little variation
across users on the clicked results, and there tend to be a
small number of highly relevant documents that are consis-
tently relevant across time. We find that, for these queries,
there are significant relationships between the likelihood of
change and the relevance level of the page. We develop a
novel probabilistic retrieval model which takes into account
dynamic content, and show significant performance improve-
ments over a model that only views a document at a single
point in time. To our knowledge, this is the first published
study looking at content change within documents from a
relevance ranking perspective.

Our contributions in this work include: the first evalua-
tion of the relationship between document dynamics and rel-
evance ranking, the introduction of a novel document rank-
ing algorithm for use with dynamic documents, and a query-
independent document prior based on document dynamics.
We show that these two approaches to ranking dynamic doc-
uments are complementary and both yield significant perfor-
mance gains.

2. RELATED WORK
Several studies have described characteristics of dynamic

web content. Fetterly et al. [10] conducted a large scale
exploration of the frequency and amount of change of ap-
proximately 150 million web pages over a ten week period.
To measure the amount of page change, the authors use
Broder et al.’s shingleprinting [7], described in more detail
below. They find that roughly 65% of the pages studied do
not change at all over the time period sampled. This anal-
ysis also shows correlations between change frequencies and
top-level domains, for example .com domains are more likely
to change than .org and .gov domains, and spam pages are
more likely to change than others.

Ntoulas et al. [17] perform a similar study on a smaller
set of web pages, 150 sites comprised of roughly 4.4 million
pages downloaded every week for a year. The authors addi-
tionally investigate changes in link structure over time and
“new” content created over the course of their collection. A



TF.IDF weighted cosine similarity is used to measure the
amount of content change across samples, and the authors
find similar change frequency and amount as the Fetterly et
al. study above. They also find that link structure changes
more rapidly than page content, suggesting that ranking al-
gorithms which rely on link information may need more fre-
quent crawls to accurately reflect the web graph. Using this
same data set, Cho et al. [8] investigated how changes in
link patterns could be used to identify high quality pages.
In the research reported in this paper, we use changes in page
content rather than link structure to set non-uniform doc-
ument priors. The relationship of content change and page
revisitation patterns is explored by Adar et al. [2, 3]. In
these studies, the authors sample 55,000 pages with diverse
revisitation characteristics at an hourly interval. A variety
of ways to characterize change are introduced in this work,
including measurements of document structural change and
term-level content change. The authors show that the pop-
ularity of the page (number of unique visitors) is positively
correlated with the frequency of change, but not the amount
of change.

Summarization and visualization of dynamic documents
and versioned collections has been explored in several stud-
ies [13, 4, 1]. Jatowt et al. [13] look at temporal charac-
teristics of term frequencies over time and these temporal
features are used to identify vocabulary for use in summa-
rization. In that work, two classes of interesting terms are
identified for inclusion in a summary: prevalent terms which
occur in most snapshots of a page and active terms which
appear and disappear in the document over time.

Implications of content change for web crawler policies
have been investigated in several studies, and of particular
pertinence to this work is that of Olston and Pandey [19].
In that work, the authors define the notion of information
longevity, or the length of time a fragment of text remains on
a page. A model of content generation is developed, which
is designed to account for differing lifetimes of text. The
authors refer to their different content generation models as
static, churn and scroll. This model is then used as motiva-
tion for setting crawling policies.

Several temporal aspects of document collections have
also been investigated, typically focusing on either docu-
ment publication time-stamps or temporal mentions in the
document text itself. The distributions of publication dates
in result sets have been used for identifying query types
or enhancing the presentation of those results. Jones and
Diaz [9, 14] look at the temporal distribution of document
time stamps returned for a query, and identify different
query types based on those distributions. Alonso et al. [4]
present a method of clustering and exploring search results
based on temporal expressions within the text. Li and Croft
explore retrieval models that leverage document timestamps,
finding that for some classes of queries, favoring more recent
documents improves performance [16]. Recently, Zhang et
al. explored identifying and re-ranking search results for
time-sensitive queries that implicitly refer to a year. They
found that for this subset of queries, favoring recent docu-
ments can improve retrieval performance [21].

Work on versioned collections [5, 6, 11], such as source
control systems or Wikis, generally explores the efficacy of
indexing methods in providing access to previous versions of
documents. This line of research focuses on indexing struc-
tures and efficiency, whereas our work is concerned with the

relationship between the changing document content and
relevance ranking.

The work presented here is distinguished from that previ-
ous work by focusing specifically on the implications of con-
tent change to relevance ranking. Similarly to some of this
previous work [13, 3], we identify interesting or important
elements of a document’s vocabulary based on terms’ tem-
poral characteristics. Previous studies have favored those
terms for summarization or visualization, whereas here we
focus the utility of those terms to improve relevance rank-
ing. In addition, we develop a query-independent document
prior using the overall temporal dynamics of the document
content.

3. DOCUMENT DYNAMICS & RELEVANCE
Documents change for many reasons. The New York Times

pages change whenever new stories are added or old stories
are updated, Craigslist when new classified ads are added,
and academics’ home pages when new papers are published.
All of these pages change at different frequencies and in dif-
ferent amounts. In this section we provide some examples
and intuitions about how such change may be used to im-
prove relevance ranking. We examine two change features:
(1) a query-relevant feature reflecting how the terms on a
page (in particular those that match the query) change over
time, and (2) a query-independent feature reflecting how
frequently or by how much the page changes over time.

Different terms in a page’s vocabulary may be more stable
or dynamic, they may remain constant over the lifetime of
the page, or they may appear or disappear as the document
changes. These differences in temporal term characteristics
may lend some insight into the terms’ importance on the
page for various information needs.

For example, on the page http://allrecipes.com, a pop-
ular website for sharing and rating recipes, stable terms that
appear consistently over time include: allrecipes, cook, cook-
books, copyright, desserts, easy, healthy, newsroom, quick,
recipe, and recipes. These terms represent a mix of charac-
teristic terms that are descriptive of the overall central topic
of the page and navigational elements. In contrast, terms
that come and go during the summer months include: inde-
pendence, themed, flag, fourth, macaroni, cream, zucchini,
and grilled. These terms represent specific content that may
have been on the page for a period of time, in this case re-
lating to current holidays or the most recent recipes. This
dynamic group of terms, although pertinent to the content
of the page at a particular time, are not central to the main
topic of the page.

When considering whether a document is relevant for a
particular query, we may wish to consider whether the in-
formation need is more likely to be addressed by consistent
or changing terms. Is the searcher more likely to be seeking
dynamic or static content? Queries reflecting current events
or late-breaking news may be better served by content that
is recent (thus dynamic over time). In the above exam-
ple, a searcher looking for recipes to cook for the Fourth
of July holiday might be satisfied with term matches in the
more dynamic portion of the page. On the other hand, for
navigational searches we may want to favor content that is
stable over a longer period of time and characteristic of the
page in general. In our example, a searcher looking for the
allrecipes.com homepage would be better served by that
portion of the document that does not change.



Characteristics of document-level change such as how fre-
quent or how much the document changes may also tell us
something about the relevance of the page. A page that
changes regularly may indicate that the page is actively
maintained or frequently communicates with readers. This
is an indication that the page may be more popular and
possibly more relevant for some types of queries. Previ-
ous studies have shown than there is a strong relationship
between web page popularity, frequency of revisitation and
the frequency of page change [2]. Based on this observation,
just knowing whether or not a page changes may be a useful
feature in relevance ranking, independent of the query.

3.1 On Evaluating Dynamics and Relevance
Evaluating document dynamics and associated relevance

judgments poses some special challenges. Information needs
that reflect searches for late-breaking news or newly created
content are particularly difficult to study in a traditional in-
formation retrieval evaluation. Queries for dynamic content
and relevance judgments must be collected contemporane-
ously with the document collection. In the above example,
an ongoing document collection must be underway when an
event such as the July 4th holiday occurred. Queries relating
to that event must be collection and assessed immediately,
before dynamic documents change. Due to the possibly fleet-
ing nature of the information need and the equally dynamic
document set likely to be relevant, collecting accurate and
realistic relevance judgments is impractical on a reasonably
large scale. Although this is an interesting research direc-
tion, these types of information needs are not the focus of
this work.

Navigational searches represent another category of in-
formation needs that could benefit from knowledge of the
dynamics of document content. As in the allrecipes.com

homepage search described above, stable terms that are char-
acteristic of the page content are likely to be more important
than transient content. The relevant pages for navigational
queries are also unlikely to change over time. For this rea-
son, it is feasible to create a test collection to investigate the
relationship between relevance and content dynamics. The
relevance assessment does not necessarily need to occur at
the same time that the query is issued, and any version of
the document over time should be equally relevant. Because
of these factors, we choose to focus on navigational queries
in this work.

4. DOCUMENT COLLECTION

4.1 Collection Description
For the purposes of studying content change and its rela-

tion to relevance ranking, we created a collection of roughly
two million HTML web documents crawled every week for a
period of ten weeks, from June 27, 2008 to August 27, 2008.
Each of the individual crawls we refer to as a time slice or
just slice of our combined collection.

The documents chosen for crawling were obtained from a
collection of queries and documents for which human rele-
vance judgments were available. Queries were chosen ran-
domly from the logs of a web search engine. 18564 queries,
each of which had at least 25 judged documents, were se-
lected and the corresponding documents were crawled for ten
weeks. This dataset is divided into training queries (60%)
and test queries (40%). The training set is used to set all

smoothing and mixing parameters, as decribed below in Sec-
tion 6.4, and the test set is used for evaluation. See Table 1
for detailed collection statistics.

Documents 2482367
All Queries 18564

Navigational Queries 2056
Ave. Document Length 2886.8 words

Ave. Query Length 2.70 words
Ave. Judgements per Query 145.6

Table 1: Collection Statistics

Documents were judged for graded relevance by human as-
sessors using a five-point scale for relevance: Bad(0), Fair(1),
Good(2), Excellent(3) and Perfect(4). Navigational results
for a query (if any) were assigned the Perfect rating. Rel-
evance assessments were collected over a period of several
months and completed prior to the document collection. Al-
though this collection period does not match exactly our
crawl, we make the assumption that, particularly for navi-
gational queries, the relevance of a page remains unchanged
between the time of judgment and our crawl.

This temporal document collection was created with the
intent of studying the relationship between document con-
tent dynamics and relevance ranking. Thus the documents
comprising our collection were chosen because they had been
returned by web search engines in response to a query. This
differs significantly from previous collections used to study
document dynamics over time, which are built from random
samples of documents [10], documents with differing popu-
larity and revisitation characteristics [3], or documents from
popular domains [17].

4.2 Document Analysis
Due to the difference in selection of documents to create

this collection as compared to previous collections, we first
explore the temporal dynamics of this collection and com-
pare it to other collections used to measure change on the
web.

4.2.1 Document Change
Several measures have been used in the past to assess the

frequency and amount of content change: shingleprints [10],
cosine similarity [17], and Dice similarity [3]. In this paper,
we will use the shingleprinting algorithm, described below.

The shingleprinting technique computes a hash signature
for each term window in the document, deterministically
samples those signatures and computes the signature over-
lap across subsequent versions of the document [7, 10]. In
the limit as the number of samples increases, this measure
approaches the Jaccard coefficient. This similarity computa-
tion is efficient, has a freely-available implementation3, and
has proven to be effective in a variety of settings such as
near duplicate detection. For the analysis here, we use shin-
gleprints to measure the similarity of subsequent versions of
a document over time, using the same parameters as pre-
viously published [10]. As our primary measure of content
change, we average the shingleprint similarity values over all

3http://research.microsoft.com/en-
us/downloads/4e0d0535-ff4c-4259-99fa-
ab34f3f57d67/default.aspx



time slices in our collection:

ShSim(D) =
1

T − 1

TX
t=2

|Sh(D(t)) ∩ Sh(D(t−1))|
N

(1)

where Sh(D(t)) are the sampled shingles in document D at
time t, N is the number of shingles sampled per document,
and T is the number of time slices, T = 10 in our collection.
In our work, as in [10], N = 84. We define a measure-
ment of the amount of change in a document over time as
ShDiff (D) = 1.0− ShSim(D).

When looking at the change amount of pages over time,
we see very similar trends as were observed in previous stud-
ies [10, 17]. We observed that 62.7% of pages remain virtu-
ally the same over all sampled timeslices, with on average
greater than 95% of their shingle prints identical. There is
a small percentage of pages (<2%) that change completely
according to the ShDiff (D) measure on every crawl. The
distribution of change amount over the course of our collec-
tion is also quite similar to previous studies, as can be seen
in Figure 1. Figure 2 shows the distribution of the change
frequency in the collection, with 6% of the documents having
at least some change at each crawled version.
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Figure 1: Change Amount (ShDiff (D)) distribution.
Vertical axis truncated to show low-frequency dis-
tribution.
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Figure 2: Change Frequency distribution. Vertical
axis truncated to show low-frequency distribution.

4.2.2 Document Change and Relevance
When looking at the relationship between change and rel-

evance, several interesting trends emerge. Figure 3 shows
the fraction of pages that change for each relevance level.
We see that pages with higher relevance (judged 3 or 4) are
more likely to change than others, regardless of the query:
62.9% of pages judged “4” change over the collection period,
whereas only 37.3% change in general.
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Figure 3: Percentage of documents at each relevance
level that undergo any change.

Highly relevant documents are not only more likely to
change than documents in general, they also tend to change
to a greater degree than other documents. Figure 4 shows
the average ShDiff (D) as a function of relevance level, for
the documents that change. In this figure, we can see for
those documents that change, the amount of change is greater
for those documents judged more relevant.
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Figure 4: Amount of change at each relevance level,
only documents that change.

4.3 Query Analysis
We now turn our attention to the query set used in our ex-

periments. As stated above, we hypothesize that a retrieval
algorithm that is able to differentially weight static and dy-
namic content may improve performance on navigational
queries. Navigational queries have been defined in previ-
ous research as those queries with one or a small number of
“right”results [7]. For collections that do not contain explicit
relevance judgments, many measures have been proposed to
identify navigational queries, including average click posi-



tion and the consistency of anchor text [15]. Since we have
relevance judgments for the queries in our dataset, we de-
fine navigational queries using these explicit judgments. We
consider a query as navigational if the query has a document
judged as “perfect” (4). There are 2056 queries with at least
one document judged “perfect” in our collection. Note that
some queries have more than one document with a “perfect”
judgement, but in most cases these documents are equiva-
lent (e.g. redirect to the same page).

5. RETRIEVAL OVER SINGLE SLICES
Current search engines have a static view of the docu-

ment collection, with only a single version of a document
present in the index at any point in time. But, as docu-
ments change, the performance of our retrieval system may
vary. In this section, we investigate this variance across
time, and evaluate it in several ways: variance of the query-
document scores, variance of the document ranks, and vari-
ance of the ranking algorithm’s performance (as measured
using the explicit relevance judgments) over time. The sta-
bility of document scores (and ranks) over time, particularly
for navigational queries, is a desirable feature of a retrieval
system. Because these queries often function as a means to
find a single known web page, the stability of those pages in
the result set is important for a consistent user experience.

The following experiments explore the stability (or lack
thereof) of the document scores, ranks and query perfor-
mance over the different time slices. For these experiments
we take a simple unigram language modeling retrieval ap-
proach, with Dirichlet-smoothed maximum likelihood esti-
mates [20]:

P (D|Q)
rank
= P (D)P (Q|D)

=P (D)
Y
q∈Q

P (q|D)n(q,Q)

=P (D)
Y
q∈Q

„
n(q,D) + µP (q|C)

|D|+ µ

«n(q,Q)

(2)

where D is the document in a single timeslice, q ∈ Q are
the query terms, n(q,D) gives the term frequency of the
term q in the document D (or query Q), C is the collection
and µ is a smoothing parameter, set at µ = 1500 for these
experiments. In the above formulation, we assume docu-
ments have an uniform prior P (D). All experiments were
conducted with the Indri search engine4.

We use Discounted Cumulative Gain (DCG) and Normal-
ize Discounted Cumulative Gain (NDCG) at rank cutoff k
as our primary evaluation metrics to measure retrieval per-
formance [12]. The formulation used here is:

DCG@k =

kX
i=1

2r(i) − 1

log2(1 + i)

where r(i) ∈ {0 . . . 4} is the relevance level of the ith ranked
document and log2 is a base-2 logarithm. NDCG is the DCG
value normalized by DCG of an optimal ranking, DCG∗@k:

NDCG@k =
DCG@k

DCG∗@k

Figures 5 and 6 show the variance of document scores
and ranks across the time slices. As we can see from the

4http://www.lemurproject.org/indri/
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Figure 5: Variance of the document scores across
time slices, with relevance level increasing from left
to right. Error bars show one standard error.
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Figure 6: Variance of the document ranks across
time slices, with relevance level increasing from left
to right. Error bars show one standard error.

figure, document scores do vary across time, and this vari-
ance is higher for more relevant pages. The effect of this
variance across time is also seen in measures of query per-
formance, such as NDCG. Average NDCG@1 ranges from
0.215 to 0.227 across the different temporal slices.

In these experiments we have focused exclusively on scor-
ing functions based on a document’s textual content to show
that scores and performance vary across time slices. We do
so to understand the variability over time of this important
ranking feature. As stated above, particularly for naviga-
tional queries, this is an undesirable property of a retrieval
model. Web search engines have other means to stabilize
document scores through a richer feature set used in rank-
ing. This data includes anchor text from the web graph,
query logs, and click-through data, which all may be more
stable than the document text itself.

6. RANKING DYNAMIC DOCUMENTS
In this section we explore ranking of dynamic documents.

We present a retrieval model for dynamic documents, a doc-
ument prior that leverages content dynamics, and present
some insight into parameter fitting in these models.



6.1 A Language Model for Dynamic Document
Retrieval

This section presents a novel document retrieval model
that leverages changing document content. Based on the
language modeling framework, this model allows differential
weighting of content based on that content’s temporal char-
acteristics. We will first present some notation used below,
then the mathematical formulation of the general retrieval
model, and finally provide the estimation details.

When we are dealing with documents over time, instead
of a single term frequency for each word in the document,
we have a vector of term frequencies. We will represent this
vector of term frequencies with a term count function similar
to Equation 2:

n(q,D) =
D
n(q,D(1)), n(q,D(2)), . . . , n(q,D(T ))

E
where the superscripts refer to time slices in our index, rang-
ing from 1 . . . T . We define the following functions as the
sum of term frequencies across all time slices, and the num-
ber of non-zero entries in the term frequency vector respec-
tively:

N(q,D) =

TX
i=1

n(q,D(i)) and

c(q,D) =

TX
i=1

I(n(q,D(i)) > 0)

where I(•) is an indicator function equal to 1 when • is true
and zero otherwise.

In order to differentially weight terms, we will identify sev-
eral classes of terms with different temporal characteristics.
These classes are based on the term frequency distribution
over time, n(q,D), and represent a variety of different cri-
teria we may wish to use to favor (or avoid) during docu-
ment ranking. For example, for a query seeking information
on recent events, it may be advantageous to place a high
weight on terms that recently entered the document’s vo-
cabulary. Navigational queries, on the other hand, may be
better served by content that is present in every time slice.
This content is likely to be more reflective of the documents
ongoing central topic, a critical aspect for these types of
information needs.

In this work we define three classes of terms to weigh
differentially. We will call these long-term, mid-term and
short-term, reflecting the length of time the vocabulary is
present on the page. These can be thought of as roughly
equivalent to Olston and Pandey’s static, scroll and churn
models [19], however our formulation is viewed at the term-
level rather than the shingle-level. Three different language
models can then be built from each of these term classes,
P (q|DL), P (q|DM ) and P (q|DS). Similar to work in fielded
retrieval and combining representations [18], we model the
document language model P (q|D) as a mixture of these
models. As in Equation 2, we assume term independence
and rank by P (D|Q) ≈ P (D)

Q
q∈Q P (q|D)n(q,Q), using the

following mixture model to estimate the query term likeli-
hoods:

P (q|D) =λLP (q|DL) + λMP (q|DM ) + λSP (q|DS) (3)

where λL, λM , λS ∈ [0, 1] and λL + λM + λS = 1.
It is convenient to think of these three models as being de-

rived from three virtual documents. Terms only appearing

in a small number of time slices comprise the short-term vir-
tual document, and terms in all of the time slices comprise
the long-term document. Taking the three virtual docu-
ments together gives the union of the document across all
time slices.

More formally, we derive the language models as follows.
First, we will define term counting functions, where the sub-
script j ∈ {L,M,S} refers to the different mixture compo-
nents:

ν(q,Dj) =N(q,D)φj(n(q,D)). (4)

The functions φj ∈ [0, 1],
P
j φj(n) = 1 control the distribu-

tion of total term counts across the different mixture com-
ponents.

With these term counting functions, shown in Equation
4, we can then estimate our mixture component language
models as follows:

P (q|Dj) =
ν(q,Dj) + µjP (q|Cj)

|Dj |+ µj
(5)

letting |Dj | =
P
w∈Dj

ν(q,Dj) be the length of this virtual

document. As in Equation 2, µj is a component-specific
smoothing parameter, and P (q|Cj) is a maximum-likelihood
estimate of the collection probability, limited to the j mix-
ture components:

P (q|Cj) =

P
Dj
ν(q,Dj)P

w

P
Dj
ν(w,Dj)

The functions φj enable the distribution of term counts
across our different mixture component in varying propor-
tions based on a term’s temporal distribution or term fre-
quency vector, n(q,D). In this work, we define φ over the
number of slices this term occurs in, c(q,D) and apply a
simple threshold as follows:

φL(n) =

(
1 if c(q,D) ∈ [0.9× T, T ]

0 otherwise

φM (n) =

(
1 if c(q,D) ∈ [0.5× T, 0.9× T )

0 otherwise

φS(n) =

(
1 if c(q,D) ∈ [0, 0.5× T )

0 otherwise.

where T = 10 is the total number of slices in our collection.
There are many ways to distribute term counts (or, equiv-

alently, probability mass) across the mixture components,
and the method presented here is motivated by simplic-
ity. This method allows efficient construction of the mixture
components with term count statistics readily accessible in
any search engine index that includes multiple versions of
documents. Other techniques for indexing versioned col-
lections, such as extensions to inverted file formats [6] or
storage of term-count deltas [5], may provide more efficient
querying. We leave exploration of these alternate indexing
formats as potential future work.

This construction produces three language models with
non-overlapping vocabulary so that terms occurring in al-
most all of the time slices will be present in the DL language
model, terms occurring in 50-90% of the time slices will be
present in the DM language model, and terms occurring in
less than 50% of the time slices will be present in the DS
language model.



Different formulations of the φ functions could allow a less
partitioned set of language models with shared vocabulary
across the models. For example, one could use a staying
power statistic as in [3] to identify terms likely to persist
in the document vocabulary. The above formulation, how-
ever, simplifies the problem considerably, allowing several
independence assumptions to be made during training of
the model parameters. We leave further explorations of the
form of these functions to future work.

6.2 Observations on the retrieval model
This retrieval model has the effect of favoring more dy-

namic over more static documents. Take, for example, two
documents A and B of the same length, |A| = |B|. Both
documents contain the query term q in all time slices with
the same frequency ν(q,AL) = ν(q,BL) > 0. Document A
has a large fraction of long-term static content, and docu-
ment B has a small fraction of long-term static content, so
that |AL| > |BL| and |AM |+ |AS | < |BM |+ |BS |. Then, by
Equation 5 we have: P (q|AL) < P (q|BL). Given reasonable
settings of the mixing parameters in Equation 3, so that the
background models CM and CS don’t dominate the scoring
function, we have P (q|A) < P (q|B).

By separating the transient, short-lived vocabulary from
longer-lived vocabulary, we effectively shorten the length of
the long-term virtual document. This, in turn, increases the
influence of those terms that are stable across the lifetime
of the document, and likely reflective of the central topic.

6.3 Document Prior
Based on the previous observation that relevant docu-

ments tend to change, we may wish to bias our ranking
function, independent of the query, in favor of dynamic doc-
uments. In the language modeling framework, this is done
through the use of a non-uniform document prior. There
are several ways to construct such a prior, such as the likeli-
hood of generating a document at time t given the language
model of documents at times t′ < t. However, in this work
we incorporate a document prior that is a simple transfor-
mation of the shingle overlap measure given in Equation 1.
The change prior is given by the following, normalized to be
a probability distribution across documents:

Pch(D) ∝ (ShDiff (D) + 1)γ (6)

where γ ≥ 0 is a parameter to be estimated. As γ ap-
proaches zero, documents are treated the same regardless of
their change characteristics; when γ = 1 this prior grows
linearly; and when γ > 1 this prior grows super-linearly
with the volume of document change. This prior assigns
maximal probability mass to documents that change com-
pletely at every slice in our collection. Although this case is
somewhat counter-intuitive, only a small fraction of pages
in our collection undergo this extreme change (see Figure 1)
and the relative benefit of favoring more dynamic documents
outweighs this risk, as we will show below.

6.4 Parameter Tuning
The models presented above require several parameters to

be estimated from the training data:
For ease of fitting these parameters, we make the assump-

tion that smoothing and mixing parameters are independent
across the three mixture components. This assumption is
not unreasonable, given that the three language models, DL,

µL, µM , µS Smoothing Parameters
λL, λM , λS Mixing Weights

γ Prior Parameter.

DM and DS contain non-overlapping vocabulary (although
the three background models CL, CM and CS do overlap).
Additionally, we also make the assumption that the prior
parameter γ is independent of the others.

These assumptions allow us to fit each parameter sep-
arately, for which we use line-search. During the train-
ing phase we seek to identify parameters that maximize
NDCG@1 for the single slice and dynamic models. We
found that the models presented here are not sensitive to
the smoothing and mixing parameters for the M and S lan-
guage models. The parameters with the most influence over
the model’s performance are the long-term model smoothing
and mixing weights, λL and µL, and the prior weight, γ.

The learned parameters for this model are informative.
First, the value of the prior parameter γ that maximizes
performance on the training set is γ ≈ 2.3. This indicates a
very strong tendency to favor documents with a high level
of content change.

Second, the smoothing parameters that maximize NDCG@1
are µL = 5, µM = µS = 1500. This long-term model pa-
rameter is much lower than what is typically reported for
Indri’s smoothing on ad-hoc retrieval tasks. The value of
this smoothing parameter influences how much of probabil-
ity mass is assigned to “unobserved” terms in the document
as compared to the terms present in the document’s text [20].
A relatively lower value of µL as compared to what is typ-
ical for the Dirichlet smoothing parameter indicates less of
a need to smooth this model with the background model,
and results in probability estimates closer to the maximum
likelihood estimates for this model, ν(q,DL)/|DL|.

Figure 7 shows the relationship between the long-term
mixing weight λL and performance. This figure shows that
λL ≈ 0.1 maximizes performance, and performance plateaus
as λL increases. The slight decrease in performance beyond
the maximum value indicates that the M and S models still
have a role to play in ranking documents for navigational
queries. For the experiments below, we use λL = 0.1 and
λM = λS = 0.45.
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Figure 7: NDCG@1 as a function of the long-term
mixing weight, λL. Remainder of mixing weight
shared evenly: λM = λS = 0.5× (1.0− λL)

Although the value of the long-term model mixing weight,
λL, that maximizes NDCG@1 is relatively smaller than the
short- and mid-term model weights, the small value of the
smoothing term µL results in much higher probability esti-



mates for P (q|DL). For this reason, the long-term model
typically dominates the final ranking formula.

7. EXPERIMENTS, RESULTS AND ANAL-
YSIS

In this section we evaluate our retrieval model and our
document change prior. As a baseline model, we use the
performance of the unigram ranking model, Equation 2, av-
eraged across all time slices. Because performance varies
over the different versions of our documents, taking the ex-
pected performance over time gives a reasonable estimate of
the performance at any single point in time We refer to this
baseline model as the single slice model below. We com-
pare this model to the dynamic model presented in Section
6.1. We also study the effect of the change prior, presented
in Section 6.3, on the both models. All experiments were
conducted with the Indri search engine.

This baseline represents a strong content-only baseline,
using the Indri search engine with parameters optimized for
our dataset. In this paper we evaluate the effects of adding
a temporal document prior (change prior) and/or tempo-
ral term information (dynamic model) compared with this
baseline. In future work we will examine how our temporal
models compare with other features commonly used in Web
search engines (e.g., document priors based on link informa-
tion such as PageRank or URL depth, or term weights based
on click data or anchor text). Since temporal features can
be used for other dynamic collections in addition to the Web
which may have very different link structure or anchor text
characteristics, we believe that it is important to start by
understanding how temporal features contribute compared
to content-only models.

As this is a high-precision web ranking task with graded
relevance levels, we use NDCG at high ranks (1, 2, 3, 5 and
10) as our primary evaluation measure. All parameters in
both the single slice and dynamic models are selected to
maximize NDCG@1 on the training set. NDCG’s normal-
ization serves to add a recall component to the evaluation
measure, and for this reason, we also report DCG which
focuses exclusively on graded precision. We are primarily
interested in performance on the queries identified as nav-
igational (Section 4.3). Complete performance results for
the navigational queries are given in Table 2. Significance
testing was performed with a two-sided paired t-test, using
the Bonferroni correction to adjust for multiple testing of
the four hypotheses. The four hypotheses involve compar-
ing the single slice model with the dynamic model (SS vs.
DY), and comparing the addition of the temporal prior, Pch,
(SS+Pch vs. SS, DY+Pch vs. DY, and DY+Pch vs. SS). For
completeness and as comparison, we report performance on
the remainder of the query set in the text, as appropriate.

The top of Table 2 compares performance for the dy-
namic model and the single slice baseline model, for both
the train and test sets. We see consistent and significant
performance improvements for the dynamic model in both
DCG and NDCG at all rank cutoffs. We see an increase
of more than 5% for all positions on the training set, and
more than 4% on the test set for both the NDCG and DCG.
This shows significant and stable advantages for the dynamic
model over the single slice model. This validates our hypoth-
esis that navigational queries are better served by a model
that can differentially weight static and dynamic content.

The bottom section of Table 2 shows the effects of adding
the change prior to both the single slice and dynamic models
for the navigational queries. For the training set, the addi-
tion of the prior improves performance of both the SS and
DY models — we see an increase of more than 10% for all
positions in both models, roughly doubling the performance
improvements seen with the dynamic term model alone. On
the test set, the performance improvement does not seem to
generalize as well at the top rank, but is consistently sig-
nificant at higher cutoffs. This small drop in performance
at the first ranks may indicate the change prior too aggres-
sively favors documents with a high volume of change, and
possibly is over-fit to the training set. From the table, it is
clear that the change prior is consistently effective at higher
ranks (>2) on both the training and test sets.

We see significant improvements over the single slice model
(SS) with both the change prior (SS+Pch) and the dynamic
model (DY). These two enhancements on their own are sta-
tistically indistinguishable. But, using both together yields
further significant improvements (DY+Pch). The advan-
tages are more than 20% compared to SS on the training set
and, except for position 1, also significant on the test set.
Thus, these two methods for leveraging dynamic document
content are complementary. The bolded entries in Table 2
indicate the best results for each level of DCG and NDCG.
In all but two cases (DCG@1 and NDCG@1 in the test set),
the combination of dynamic term model and change prior
produces the best overall retrieval performance.

These experimental results show that significant perfor-
mance gains over a strong content-only baseline on naviga-
tional queries. Using just the dynamic retrieval model re-
sults in more than a 4% improvement in performance, and
this advantage is consistent for all ranks. Adding a tempo-
ral document prior to either the single slice (SS) or dynamic
(DY) model provides additional retrieval benefits and these
effects are most evident at higher ranks. These results are
quite promising. They represent the first experiments at-
tempting to model content dynamics in a document ranking
algorithm. We describe several extensions below which we
believe can further improve retrieval performance by taking
into account the dynamics of document content over time.

Although our main focus is on navigational queries (and
we tuned the retrieval model for such queries), we also in-
vestigated the performance of our models on the full query
set. On the full query set, we see roughly a 1.3% decrease
in NDCG@1 when using the dynamic model as compared to
the single-slice model. The application of the change prior
to the single-slice model results in approximately a 1.7%
increase in performance. Neither of these differences are
significant.

8. CONCLUSION
In this paper, we have presented the first published anal-

ysis of using document content change characteristics in rel-
evance ranking. We demonstrated a strong relationship be-
tween content change and relevance, and have developed two
methods for leveraging this in ranking algorithms. First, we
developed a probabilistic retrieval model that can differen-
tially weight terms based on their temporal characteristics.
Second, we developed a query independent document prior
that can be used to favor dynamic documents. Both of these
independently led to significant performance improvements
on navigational queries. Additionally, these two methods



Train Set Test Set

SS DY % over SS SS DY % over SS

nDCG@1 0.1112 0.1214 9.17∗∗ 0.1409 0.1466 4.04∗

2 0.1378 0.1453 5.44∗ 0.1611 0.1700 5.53∗

3 0.1591 0.1692 6.35∗∗∗ 0.1827 0.1907 4.36∗

5 0.1921 0.2045 6.45∗∗∗ 0.2126 0.2220 4.43∗∗

10 0.2524 0.2693 6.70∗∗∗ 0.2766 0.2903 4.94∗∗∗

DCG@1 1.6686 1.8216 9.17∗∗ 2.1137 2.2004 4.10∗

2 2.7475 2.9033 5.67∗ 3.2786 3.4454 5.09∗

3 3.5871 3.8210 6.52∗∗∗ 4.2046 4.3725 3.99∗

5 4.9106 5.2359 6.62∗∗∗ 5.5329 5.7768 4.41∗∗

10 7.4550 7.9617 6.80∗∗∗ 8.2670 8.6976 5.21∗∗∗

SS+Pch % over SS DY+Pch % over DY % over SS SS+Pch % over SS DY+Pch % over DY % over DY

nDCG@1 0.1275 14.70∗∗ 0.1368 12.68∗ 23.02∗∗ 0.1338 -5.08∗ 0.1397 -4.68∗ -4.68∗

2 0.1558 13.06∗∗∗ 0.1692 16.47∗∗ 22.81∗∗∗ 0.1670 3.66∗ 0.1759 3.45∗ 3.45∗

3 0.1767 11.06∗∗∗ 0.1929 14.01∗∗∗ 21.25∗∗∗ 0.1955 6.99∗ 0.2049 7.44∗∗ 7.44∗∗

5 0.2144 11.60∗∗∗ 0.2354 15.09∗∗∗ 22.52∗∗∗ 0.2404 13.10∗∗ 0.2470 11.27∗∗ 11.27∗∗

10 0.2796 10.79∗∗∗ 0.3076 14.21∗∗∗ 21.85∗∗∗ 0.3143 13.60∗∗∗ 0.3177 9.43∗∗∗ 9.43∗∗∗

DCG@1 1.9131 14.65∗∗ 2.0519 12.64∗ 22.97∗∗ 2.0065 -5.07∗ 2.0960 -4.75∗ -4.75∗

2 3.1140 13.34∗∗∗ 3.3757 16.27∗∗ 22.86∗∗∗ 3.3876 3.33∗ 3.5334 2.55∗ 2.55∗

3 4.0078 11.73∗∗∗ 4.3810 14.65∗∗∗ 22.13∗∗∗ 4.4823 6.60∗ 4.6786 7.00∗∗ 7.00∗∗

5 5.5340 12.69∗∗∗ 6.1267 17.01∗∗∗ 24.76∗∗∗ 6.3244 14.31∗∗ 6.4584 11.80∗∗ 11.8∗∗

10 8.3868 12.50∗∗∗ 9.2854 16.63∗∗∗ 24.55∗∗∗ 9.6036 16.17∗∗∗ 9.6536 10.99∗∗∗ 10.99∗∗∗

Table 2: Full Performance Results for Navigational Queries. Top shows Single Slice Model (SS) vs. Dynamic
Model (DY). Bottom shows the effect of Prior (+Pch) on both models. ∗, ∗∗, ∗∗∗ indicate differences at the
0.05, 0.01 and 0.001 adjusted significance levels with a two-sided paired t-test. Bolded entries indicate the
best result for each level of DCG and NDCG.

are complimentary, and when used together yield further
performance improvements.

These results show that for navigational queries, two as-
pects of document dynamics are significant for relevance
ranking. The effect of the document change prior (Pch)
indicates that favoring dynamic pages in relevance rank-
ing can lead to performance improvements. The effect of
the dynamic ranking model (DY) indicates that favoring
static content within those pages also improves performance.
These two effects are different and complementary, with
their combination (DY + Pch) yielding the best retrieval
performance.

These results demonstrate that document dynamics can
play a significant role in relevance ranking. The models here
are only a first step in understanding the complex interaction
between document retrieval algorithms and content dynam-
ics. Several areas of this research open the door to further
experimentation with ranking algorithms that are sensitive
to dynamic documents. Other methods of modeling stable
and dynamic content in documents, for example, may lead
to richer language models which can be tailored towards
different types of information needs. Similarly, alternative
methods for using temporal change patterns to develop doc-
ument priors could be explored.

This work focused on navigational queries, but other in-
formation needs may also be appropriate to study in the
context of document dynamics. Query volume often follows
bursty or cyclical patterns, corresponding to public interest
in news or recurring events. Understanding the relationship
between query dynamics and document dynamics could lead
to further insight into how document change can be lever-
aged in ranking algorithms. As noted earlier, there are some
interesting challenges in developing test collections for this
since relevance judgments may change over time.

There are also several interesting systems-related issues in

representing document change over time. In the research re-
ported in this paper, we simply saved multiple versions of the
collection, but this may not be feasible in all settings. De-
veloping methods for identifying sufficient statistics, optimal
sampling frequencies, etc. are important research directions.

Although we have focused on web documents in our exper-
iments, these techniques are equally applicable to any docu-
ment collection with similar temporal dynamics. Versioned
collections such as Wikis are a prime example, where doc-
uments can undergo continuous editing and revision. Cor-
porate intranet environments also frequently contain docu-
ments that undergo periodic changes, but often lack the rich
link structure, descriptive anchor text, and large amount of
user interaction data that are available on the web and im-
portant in web ranking algorithms. These environments may
also benefit from retrieval models that are sensitive to term
dynamics, like the ones presented here.
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