PUTTING THE SEARCHERS BACK INTO SEARCH
Overview

- The changing IR landscape
- Search increasingly pervasive and important
 - Characterized by diversity of tasks, searchers and interactivity
- Methods for understanding searchers
 - Lab, panels, large-scale logs
 - Examples from Web and desktop search, and contextualized search
- New trends and opportunities
20 Years Ago ...

- **Web in 1994:**
 - **Size of the web**
 - # web sites: 2.7k (13.5% .com)
 - **Mosaic** 1 year old (pre Netscape, IE, Chrome)

- **Search in 1994:**
 - 17th SIGIR
 - TREC 2.5 years old
 - **Size of Lycos search engine**
 - # web pages in index: 54k
 - This was about to change rapidly
 - **Behavioral logs**
 - # queries/day: 1.5k
Today ... Search is Everywhere

- Trillions of pages discovered by search engines
- Billions of web searches and clicks per day
- Search a core fabric of people’s everyday lives
 - Diversity of tasks, searchers, and interactivity
 - Pervasive (desktop, enterprise, web, apps, etc.)
- We should be proud, but …
- Understanding and supporting searchers more important now than ever before
 - Requires both great results and experiences
Where are the Searchers in Search?
Search in Context

Searcher Context

Query

Task Context

Ranked List

Document Context
Evaluating Search Systems

- Cranfield/TREC-style test collections
 - Fixed: Queries, Documents, Relevance Judgments, Metrics
 - Goal: Compare systems, w/ respect to metric(s)

- What’s missing?
 - Characterization of queries/tasks
 - How selected? What can we generalize to?
 - Searcher-centered metrics
 - Implicit models in: AvgPr vs. Pr@10 vs. DCG or RBP vs. time
 - Rich models of searchers
 - Current context, history of previous interactions, preferences, expertise
 - Presentation/Interaction
 - Snippets, composition of the whole page, search support (spelling correction, query suggestions), speed of system, etc.

[Voorhees, HCIR 2009] A test collection is (purposely) a stark abstraction of real user search tasks that models only a few of the variables that affect search behavior and was explicitly designed to minimize individual searcher effects. … this ruthless abstraction of the user …
Filling the Gaps in Evaluation

- Methods for understanding and modeling searchers
 - Experimental lab studies
 - Observational log analysis
 - … and many more

- What can learn from each?

- How can we use these insights to improve search systems and evaluation paradigms?

- How can we bridge the gap between “offline” and “online” experiments?
Kinds of Behavioral Data

Lab Studies
In lab, controlled tasks, with detailed instrumentation and interaction

- 10-100s of people (and tasks)
- Known tasks, carefully controlled
- Detailed information: video, gaze-tracking, think-aloud protocols
- Can evaluate experimental systems

Dumais et al., 2014
Kinds of Behavioral Data

Lab Studies
In lab, controlled tasks, with detailed instrumentation and interaction

Panel Studies
In the wild, real-world tasks, ability to probe for detail

- 100-1000s of people (and tasks)
- In-the-wild
- Special client instrumentation
- Can probe about specific tasks, successes/failures
Kinds of Behavioral Data

Lab Studies
In lab, controlled tasks, with detailed instrumentation and interaction

Panel Studies
In the wild, real-world tasks, ability to probe for detail

Log Studies
In the wild, no explicit feedback but lots of implicit feedback

- Millions of people (& tasks)
- In-the-wild
- Diversity and dynamics
- Abundance of data, but it’s noisy and unlabeled (what vs. why)
Kinds of Behavioral Data

<table>
<thead>
<tr>
<th></th>
<th>Observational</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Studies</td>
<td>Controlled tasks, in laboratory, with detailed instrumentation</td>
<td>In-lab behavior observations</td>
</tr>
<tr>
<td>Panel Studies</td>
<td>In the wild, real-world tasks, ability to probe for detail</td>
<td>Ethnography, case studies, panels (e.g., Nielsen)</td>
</tr>
<tr>
<td>Log Studies</td>
<td>In the wild, no explicit feedback but lots of implicit feedback</td>
<td>Logs from a single system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/B testing of alternative systems or algorithms</td>
</tr>
</tbody>
</table>

Goal: Build an abstract picture of behavior

Goal: Decide if one approach is better than another
What Are Behavioral Logs?

- Traces of human behavior
 - ... seen through the lenses of whatever sensors we have
What Are Behavioral Logs?

- Traces of human behavior
 - ... seen through the lenses of whatever sensors we have
 - Web search: queries, results, clicks, dwell time, etc.

- Actual, real-world (in situ) behavior
 - Not ...
 - Recalled behavior
 - Subjective impressions of behavior
 - Controlled experimental task
Benefits of Behavioral Logs

- Real-world
 - Portrait of actual behavior, warts and all

- Large-scale
 - Millions of people and tasks
 - Even rare behaviors are common
 - Small differences can be measured
 - Tremendous diversity of behaviors and information needs (the “long tail”)

- Real-time
 - Feedback is immediate
Early log analysis …
- Excite logs 1997, 1999
- Silverstein et al. 1998, Broder 2002

Web search != library search
- Queries are very short, 2.4 words
- Lots of people search for sex
- “Navigating” is common, 30-40%
 - Getting to web sites vs. finding out about things
- Queries are not independent, e.g., tasks
- Amazing diversity of information needs (long tail)
Queries Not Equally Likely

- **Excite 1999 data**
 - ~2.5 mil queries <time, user id, query>
 - Head: top 250 account for 10% of queries
 - Tail: ~950k occur exactly once

- **Zipf Distribution**

Top 10 Q
- sex
- yahoo
- chat
- horoscope
- pokemon
- hotmail
- games
- mp3
- weather
- ebay

Navigational queries, one-word queries

Query Freq = 10
- foosball AND Harvard
- sony playstation cheat codes
- breakfast or brunch menus
- australia gift baskets
- colleges with majors of web page design

Multi-word queries, specific URLs

Query Freq = 1
- acm98
- winsock 1.1 w2k compliant
- Coolangatta, Gold Coast newspaper
- email address for paul allen the seattle seahawks owner

Complex queries, rare info needs, misspellings, URLs
Queries Vary Over Time and Task

- **Time**
 - Periodicities
 - Trends
 - Events

- **Tasks/Individuals**
 - Sessions
 - Longer history

(Q = **SIGIR** | information retrieval vs. Iraq reconstruction)

(Q = **SIGIR** | Susan vs. Stuart)

Q = **tesla**

Q = **world cup**
What Observational Logs Can Tell Us

- **Summary measures**
 - Query frequency
 - Query length

- **Query intent**
 - Query types and topics

- **Temporal patterns**
 - Session length
 - Common re-formulations

- **Click behavior**
 - Relevant results for query
 - Queries that lead to clicks

Queries appear 3.97 times
[Silverstein et al. 1999]

Queries 2.35 terms
[Jansen et al. 1998]

Informational, Navigational, Transactional
[Broder 2002]

Sessions 2.20 queries long
[Silverstein et al. 1999]

[Lau and Horvitz, 1999]

<table>
<thead>
<tr>
<th>retrieval function</th>
<th>bxx</th>
<th>tfc</th>
<th>hand-tuned</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg. clickrank</td>
<td>6.26±1.14</td>
<td>6.18±1.33</td>
<td>6.04±0.92</td>
</tr>
</tbody>
</table>

[Joachims 2002]
From Observations to Experiments

- Observations provide insights about interaction with existing systems
- **Experiments** are the life blood of web systems
 - Controlled experiments to compare system variants
 - Used to study all aspects of search systems
 - Ranking algorithms
 - Snippet generation
 - Spelling and query suggestions
 - Fonts, layout
 - System latency
- Guide where to invest resources to improve search
Experiments At Web Scale

- Basic questions
 - What do you want to evaluate?
 - What metric(s) do you care about?
- Within- vs. between-subject designs
 - Within: Interleaving (for ranking changes); otherwise add temporal-split between experimental and control conditions
 - Between: More widely useful, but higher variance
- Some things easier to study than others
 - Algorithmic vs. Interface vs. Social Systems
- Counterfactuals, Power, and Ramping-Up important

Kohavi et al., DMKD 2009
Dumais et al., 2014
Uses of Behavioral Logs

- Provide (often surprising) insights about how people interact with search systems
 - Focus efforts on supporting actual (vs. presumed) activities
 - E.g., Diversity of tasks, searchers, contexts of use, etc.
 - Suggest experiments about important or unexpected behaviors
 - Provide input for predictive models and simulations
- Improve system performance
 - Caching, Ranking features, etc.
- Support new search experiences
- Changes how systems are evaluated and improved
How do you go from 2.4 words to great results?

- **Content**
 - Match (query, page content)

- **Link structure**
 - Non-uniform priors on pages

- **Author/searcher behavior**
 - Anchor text
 - Query-click data
 - Query reformulations

- **Contextual metadata**
 - Who, what, where, when, …

Powered by ... behavioral insights
What Logs (Alone) Cannot Tell Us

- Limited annotations
 - People’s intent
 - People’s success
 - People’s experience
 - People’s attention

- Behavior can mean many things

- Limited to existing systems and interactions

- Lots about “what” people are doing, less about “why”

- Complement with other techniques to provide a more complete picture (e.g., lab, panel studies, modeling)
Understanding Searchers

- Using complementary methods to better understand and model searchers

- Examples from …
 - New domains
 - Web search vs. Library search
 - Desktop search vs. Web search
 - Contextual search
 - Personalization
 - Tasks/sessions
 - Temporal dynamics
Web Search != Library Search

- Traditional notions of “information needs” did not adequately describe web searcher behavior
- Alta Vista studies
 - Analysis of AV logs
 - yahoo
 - ebay
 - Hotmail
 - Yahoo.com
 - aol
 - maps
 - weather
 - Gold Coast
 - Pearl Jam lyrics
 - download free wallpaper
 - quicktime download
 - buy CD online
 - How can Jeeves help me shop for books?

- Pop up survey on AV, Jun-Nov 2001

2. Which of the following describes best what you are trying to do?
 - I want to get to a specific website that I already have in mind
 - I want a good site on this topic, but I don’t have a specific site in mind

3. Which of the following best describes why you conducted this search?
 - I am shopping for something to buy on the Internet
 - I am shopping for something to buy elsewhere than on the Internet
 - I want to download a file (e.g., music, images, programs, etc.)
 - None of these reasons

4. Which of the following describes best what you are looking for?
 - A site which is a collection of links to other sites regarding this topic
 - The best site regarding this topic
Web Search != Library Search

- Traditional notions of “information needs” did not adequately describe web searcher behavior
- Alta Vista studies
 - Analysis of AV logs
 - Pop up survey on AV, Jun-Nov 2001
- Three general types of search intents
 - Informational (find information about a topic)
 - Navigational (find a single known web page)
 - Transactional (find a site where web-mediated activities can be performed, e.g., download game, find map, shop)
Desktop Search != Web Search

- Desktop search, circa 2000
 - Easier to find things on the web than on your desktop

- Fast, flexible search over “Stuff I’ve Seen”
 - Heterogeneous info: files, email, calendar, web, IM
 - Index: full-content plus metadata
 - Interface: highly interactive rich list-view
 - Sorting, filtering, scrolling
 - Rich actions on results (open folder, drag)
 - Support re-finding vs. finding
Stuff I’ve Seen: Example searches

Looking for: recent email from Fedor that contained a link to his new demo
Initiated from: Start menu
Query: from:Fedor

Looking for: the pdf of a SIGIR paper on context and ranking (not sure it used those words) that someone (don’t remember who) sent me a month ago
Initiated from: Outlook
Query: SIGIR

Looking for: meeting invite for the last intern handoff
Initiated from: Start menu
Query: intern handoff kind:appointment

Looking for: C# program I wrote a long time ago
Initiated from: Explorer pane
Query: QCluster*.*
Stuff I’ve Seen: Evaluation

- Surveys and structured interviews
- Developed and deployed the system, and iterated
 - Log data [queries, interactions, time]
 - Questionnaire and interviews [pre- and post-]
 - Experiment [6 alternative systems]

Sort By Date vs. Rank
Top vs. Side
Preview vs. Not
Stuff I’ve Seen: Results

- **Queries**
 - Very short (1.6 words); People important (25%)

- **Opened items**
 - Type: Email (76%), Web pages (14%), Files (10%)
 - Age: Today (5%), Last week (21%), Last month (47%)

- **Interface expts: large effect of Date vs. Rank**
 - **Date** by far the most common sort order
 - Few searches for “best” matching object
 - Many other criteria – e.g., time, people

- **Abstractions important**
 - E.g., “image”, “people”, “useful date”
People remember many attributes in re-finding
- Seldom: only general overall topic
- Often: time, people, file type, etc.
- Different attributes for different tasks

Rich client-side interface
- Support fast iteration and refinement
- Fast filter-sort-scroll vs. next-next-next
- “Fluidity of interactions”

Desktop search \(!=\) Web search
Context: One Size Does Not Fit All

- Queries are difficult to interpret in isolation

- Easier if we can model: who is asking, where they are, what they have done in the past, when it is, etc.

 Searcher: *(SIGIR | Susan Dumais ... an information retrieval researcher)*
 vs. *(SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Reconstruction)*

SIGIR
Context: One Size Does Not Fit All

- Queries are difficult to interpret in isolation

![Bing](https://via.placeholder.com/150)

- Easier if we can model: who is asking, where they are, what they have done in the past, when it is, etc.

 Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher) vs. (SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Reconstruction)

 Previous actions: (SIGIR | information retrieval) vs. (SIGIR | U.S. coalitional provisional authority)

 Location: (SIGIR | at SIGIR conference) vs. (SIGIR | in Washington DC)

 Time: (SIGIR | July conference) vs. (SIGIR | Iraq news)

- Using a single ranking for everyone, in every context, at every point in time limits how well a search engine can do
Potential for Personalization

- Framework to quantify the variation relevance for the same query across individuals
 - Measured individual relevance with explicit & implicit

- Personalized search study with explicit judgments
 - 46% potential increase in search quality with core ranking
 - 70% potential increase with personalization
Potential for Personalization (cont’d)

- Framework to quantify the variation relevance for the same query across individuals
 - Measured individual relevance w/ explicit & implicit
 - Personalized search study with explicit judgments
 - 46% potential increase in search quality with core ranking
 - 70% potential increase with personalization

- Construct individual models considering different
 - Sources of evidence: Content, behavior
 - Time frames: Short-term, long-term
 - Who: Individual, group

Personalized Nav
Adaptive Ranking
Re-finding common in web search
- 33% of queries are repeat queries
- 39% of clicks are repeat clicks

Teevan et al., SIGIR 2007
Tyler & Teevan, WSDM 2010
Personal Navigation

- **Re-finding common in web search**
 - 33% of queries are repeat queries
 - 39% of clicks are repeat clicks

- **Many are navigational queries**
 - E.g., sigir 2014 -> sigir.org/sigir2014

- **“Personal” navigational queries**
 - Different intents across individuals, but same intent for an individual
 - E.g., SIGIR (for Dumais) -> www.sigir.org
 - E.g., SIGIR (for Bowen Jr.) -> www.sigir.mil
 - High coverage (~15% of queries)
 - Very high prediction accuracy (~95%)

- **Online A/B experiments**

<table>
<thead>
<tr>
<th></th>
<th>Repeat Click</th>
<th>New Click</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat Query</td>
<td>33%</td>
<td>29%</td>
</tr>
<tr>
<td>New Query</td>
<td>67%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>39%</td>
<td>61%</td>
</tr>
</tbody>
</table>
Adaptive Ranking

- Queries do not occur in isolation
 - 60% of sessions contain multiple queries
 - 50% of search time spent in sessions of 30+ mins
 - 15% of tasks continue across sessions or devices

- Unified model to represent

- Short-term session context
 - Previous actions (queries, clicks) within current session
 - (Q = SIGIR | information retrieval vs. Iraq reconstruction)
 - (Q = ACL | computational linguistics vs. knee injury vs. country music)

- Long-term preferences and interests
 - Behavior: Specific queries, URLs, sites
 - Content: Language models, topic models, etc.
Adaptive Ranking (cont’d)

- **Searcher model (content)**
 - Specific queries, URLs
 - Topic distributions, using ODP

- **Which sources are important?**
 - Session (short-term): +25%
 - Historic (long-term): +45%
 - Combinations: +65-75%

- **What happens within a session?**
 - By 3rd query in session, short-term features more important than long-term features
 - First queries in session are different – shorter, higher click entropy

- **Searcher model (time)**
 - Session, Historical, Combinations
 - Temporal weighting

Diagram: Adaptive Ranking

- Historic
- Session
- Aggregate

Bar charts showing MAP gain over query position in session: Session, Historic, Aggregate, Union.
Building Predictive Models

- Collect searcher behavior
 - From lab, panel, or log studies
- Identify variables of interest
 - E.g., doc relevance, session success, task continuation
- Collect some labeled data
 - From searcher (ideal), or annotator
- Learn models to predict variables of interest
 - Curious Browser [doc relevance, session success]
 - Cross-session/device continuation [task continuation]
- Evaluate, validate and generalize
Summary of Examples

- Complementary methods (from lab studies, to panels, to large-scale behavioral logs) can be used to understand and model searchers.

- Especially important in new search domains, and in accommodating the variability that we see across individuals and tasks.
Looking Forward: What’s Next?

- Importance of spatio-temporal contexts
- Richer representations and dialogs
 - E.g., knowledge graphs, Siri, Cortana
- More proactive search, especially in mobile
- Tighter coupling of digital and physical worlds
- Computational platforms that seamlessly couple human and algorithmic components
 - E.g., IM-an-Expert, Tail Answers, VizWiz
- Richer task support
Summary

- Search is an increasingly important part of people’s everyday lives
 - Traditional test collections are very limited, especially with respect to modeling searchers
 - Need to extend evaluation methods to handle the diversity of searchers, tasks, and interactivity that characterize search

- To understand and support searchers requires varied behavioral insights, and a broad inter-disciplinary perspective

- If search doesn’t work for people, it doesn’t work. Let’s make sure that it does !!!
Thank you!

More info at:

http://research.microsoft.com/~sdumais
Voorhees, I come not to bury Cranfield, but to praise it. *HCIR 2009*

Dumais et al., Understanding user behavior through log and data analysis. *Ways of Knowing 2014*

Kohavi et al., Controlled experiments on the Web: Survey and practical guide *DMKD 2009*

Broder, A taxonomy of Web search. *SIGIR Forum 2002*

Rose & Levinson, Understanding user goals in Web search. *WWW 2004*

Dumais et al., Stuff I’ve Seen: A system for personal information retrieval and re-use. *SIGIR 2003*

Teevan et al., Potential for personalization. *ToCHI 2010*

Teevan et al., Information re-retrieval: Repeat queries in Yahoo’s logs. *SIGIR 2007*

Tyler & Teevan, Large scale query log analysis of re-finding. *WSDM 2010*

Bennett et al., Modeling the impact of short- and long-term behavior on search personalization. *SIGIR 2012*

Elsas & Dumais, Leveraging temporal dynamics of document content in relevance ranking, *WSDM 2010*

Radinski et al., Behavioral dynamics on the Web: Learning modeling and predicting. *TOIS 2013*

Fox et al., Evaluating implicit measures to improve the search experience. *TOIS 2005*