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ranking process. Our motivation for this work is to understand

We show that incorporating user behavior data can significanfigW implicit feedback can be used in a large-scale operational

improve ordering of top results in real web search settiige

environment to improve retrieval. How does it compareatd

examine alternatives for incorporating feedback into the rankig@MPliment evidence from page content, anchor text, or linkebas

process and explore the contributions of user feedback compa

fgafures such as inlinks or PageRank? While it is intuitive tha

to other common web search features. We report resudtdangie  USE' interactions with the web search engine should revesdsit |
scale evaluation over 3,000 queries and 12 million us&™e information that could be used for ranking, estimating user
interactions with a popular web search engine. We show tijeferences in real web search settings is a challerlglrh?gaerp
incorporating implicit feedback can augment other featureiNC@ real user interactions tend to be more “noisy” than
improving the accuracy of a competitive web search rankirﬁj)mmomy assumed in the controlled settings of previous studie

algorithms by as much as 31% relative to the originghyr paper explores whether implicit feedback can be helpful in

performance.

Categoriesand Subject Descriptors

H.3.3 Information Search and RetrievalRelevance feedback,
search process, H.3.5 Online Information Services Web-based
SErvices.

General Terms
Algorithms, Measurement, Experimentation

Keywords

Web search, implicit relevance feedback, web search ranking.

1. INTRODUCTION

Millions of users interact with search engines daily. Thespeé
queries, follow some of the links in the results, click on agend

time on pages, reformulate their queries, and perform ot
actions. These interactions can serve as a valuable sofirc
information for tuning and improving web search result ranking

and can compliment more costly explicit judgments.

realistic environments, where user feedback can be noisy (or
adversarial) and a web search engine already uses hundreds of
features and is heavily tuned. To this end, we explore different
approaches for ranking web search results using real user drehavi
obtained as part of normal interactions with the web search
engine.

The specific contributions of this paper include:

» Analysis of alternatives for incorporating user behavior
into web search ranking (Section 3).

« An application of a robust implicit feedback model
derived from mining millions of user interactions with a
major web search engine (Section 4).

« A large scale evaluation over real user queries and search
results, showing significant improvements derived from
incorporating user feedback (Section 6).

rWe summarize our findings and discuss extensions to the current
Svork in Section 7, which concludes the paper.

2. BACKGROUND AND RELATED WORK

Implicit relevance feedback for ranking and personalization h&&anking search results is a fundamental problem in information
become an active area of research. Recent work by Joaghuins retrieval. Most common approaches primarily focus on anity
others exploring implicit feedback in controlled environmentsf query and a page, as well as the overall page qualit{3.4,
have shown the value of incorporating implicit feedback into thidowever, with increasing popularity of search engines, intplic
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feedback (i.e., the actions users take when interacting with the
search engine) can be used to improve the rankings.

Implicit relevance measures have been studied by severatclese
groups. An overview of implicit measures is compiled inlKehd
Teevan [14]. This research, while developing valuable insights
into implicit relevance measures, was not applied to imptbge
ranking of web search results in realistic settings.



Closely related to our work, Joachims [11] collected iaifpl We experimented with a variety of merging functions on the
measures in place of explicit measures, introducing a techniqievelopment set of queries (and using a set of interactiomsér
based entirely on clickthrough data to learn ranking functions. Fdiferent time period from final evaluation sets). We fouhalt ta

et al. [8] explored the relationship between implicit and expliceimple rank merging heuristic combination works well, and is
measures in Web search, and developed Bayesian modelsotmust to variations in score values from original rankers. a
correlate implicit measures and explicit relevance judgmfamts given queryg, the implicit scord & is computed for each result
both individual queries and search sessions. This work considefemn available user interaction features, resulting in thglicit

a wide range of user behaviors (e.g., dwell time, sdiole, ranklg for each result. We compute a merged s&d) for d by
reformulation patterns) in addition to the popular clickthrougbombining the ranks obtained from implicit feedbalgkwith the
behavior. However, the modeling effort was aimed at pri@dict original rank ofd, Oq:
explicit relevance judgments from implicit user actions and no

. 1 1 N .
specifically at learning ranking functions. Other studies @ us Wi 1Yo 1 if implicit feedback exists for d
behavior in web search include Pharo and Jarvelin [19], but webe (d: 4,04, W,) = T -
not directly applied to improve ranking. 0, +1 onerwse

More recently, Joachims et al. [12] presented an empirical

evaluatiorj of intgrpreting cIickthrough e\_/id_ence. By perf(_)rming,here the weightw is a heuristically tuned scaling factor
eye tracking studies and correlating predictions of theitegi@s representing the relative “importance” of the implicit feekba
with explicit ratings, the authors showed that it is possible trpq query results are ordered in by decreasing valu&y ob
accurately interpret clickthroughs in a controlled, laboratory.oqce the final ranking. One special case of this modelsarise
setting. Unfortunately, the extent to which previous researghyon settingn to a very large value, effectively forcing clicked
applies to real-world web search is unclear. At the same, ti \oq it 1o be ranked higher than un-clicked results — an intuitive
while recent work (e.g., [26]) on using clickthrough informatio and effective heuristic that we will use as a baseline. Apgply

for improving web search ranking is promising, it captures only,,.e gophisticated classifier and ranker combination algasithm
one aspect of the user interactions with web search engines. may result in additional improvements, and is a promising

We build on existing research to develop robust user behavitirection for future work.
interpretation techniques f(_)r the real web search setting_atﬁ!sﬁ The approach above assumes that there are no interactions
treating each user as a reliable "expert’, we aggregéiemation  peyeen the underlying features producing the original web search
from multiple, unreliable, user search session traces, @S Wnking and the implicit feedback features. We now relax this
describe in the next two sections. assumption by integrating implicit feedback features direatly i

the ranking process.

3. INCORPORATING IMPLICIT 3.2 Ranking with Implicit Feedback Features

FEEDBACK Modern web search engines rank results based on a large number

. . of f includin ntent- fi r i.e., howlgl
We consider two complementary approaches to ranking wﬁw eatures, including content-based features (i.e., howlglese

AT ) R . uery matches the text or title or anchor text of the docurmemd)
implicit feedback: (1) treating implicit feedback as |ndepender9t L .
evidence for ranking results, and (2) integrating implicit feekdbaquery independent page quality features (e.g., PageRank of the

. . . . . ment or th main). In m mati r semi-
features directly into the ranking algorithm. We describetoe document or the domain) ost cases, automatic (or se

general ranking approaches next. The specific implicit feedb aEtomatlc) methods are developed for tuning the specific ranking

. - . . nction th mbin h f re val .
features are described in Section 4, and the algorithms 8r ction that combines these feature values

interpreting and incorporating implicit feedback are described Idence, a natural approach is to incorporate implicit feedback

Section 5. features directly as features for the ranking algorithm.irigur
.. training or tuning, the ranker can be tuned as before but with

31 |mp|ICIt Feedback as| ndependent additional features. At runtime, the search engine would fétsh t

Evidence implicit feedback features associated with each query-regilt U

The general approach is to re-rank the results obtained by a vid@y. This model requires a ranking algorithm to be robust to
search engine according to observed clickthrough and other ugggsing values: more than 50% of queries to web search engines
interactions for the query in previous search sessions. fEaalt ~ are unique, with no previous implicit feedback available. We now
is assigned a score according to expected relevance/udegcribe such a ranker that we used to learn over the combined
satisfaction based on previous interactions, resulting in sorgature sets including implicit feedback.

preference ordering based on user interactions alone. 33 Learning to Rank Web Search Results

While there has been significant work on merging multiple, key aspect of our approach is exploiting recent advances in

rankings, we adapt a simple and robust approach of ignoring tgchine learning, namely trainable ranking algorithms for web

original rankers’ scores, and instead simply merge the ratétr search and information retrieval (e.g., [5, 11] and classésallts

The main reason for ignoring the original scores is thatesthe reviewed in [3]). In our setting, explicit human relevance

feature spaces and learning algorithms are different, thessace judgments (labels) are available for a set of web searctiegue

not directly comparable, and re-normalization tends to rertieve and results. Hence, an attractive choice to use is a SS@Ervi

benefit of incorporating classifier scores. machine learning technique to learn a ranking function that best
predicts relevance judgments.



RankNet is one such algorithm. It is a neural net tuningithhigor designed to provide essential information about the user
that optimizes feature weights to best match explicitly idexv experience to make feedback interpretation robust. For example,
pairwise user preferences. While the specific training #ilgns  web search users can often determine whether a resultvanele
used by RankNet are beyond the scope of this paper, it hglooking at the result title, URL, and summary — in mangsas
described in detail in [5] and includes extensive evaluation aftmbking at the original document is not necessary. To mdiel t
comparison with other ranking methods. An attractive featfire aspect of user experience we include features such as owverlap i
RankNet is both train- and run-time efficiency — runtime rankingiords in title and words in query (TitleOverlap) and the fomcti

can be quickly computed and can scale to the web, and trainofgvords shared by the query and the result summary.
can be done over thousands of queries and associated judged

results.

We use a 2-layer implementation of RankNet in order to mo
non-linear relationships between features. Furthermore, Rank
can learn with many (differentiable) cost functions, and hente

Cljckthrough features

Osition

Position of the URL in Current ranking

0
%ﬁékFrequency

Number of clicks for this query, UR&ir

[SlickProbability

Probability of a click for thisugry and URL

automatically learn a ranking function from human-provid

€ElickDeviation

Deviation from expected click proliléip

labels, an attractive alternative to heuristic featunmbination

IsNextClicked

1 if clicked on next position, 0 ativise

techniques. Hence, we will also use RankNet as a genericr rafkBreviousClicked

1 if clicked on previous positiOrotherwise

to explore the contribution of implicit feedback for differengsClickAbove

1 if there is a click above, 0 otheswi

ranking alternatives.

IsClickBelow 1 if there is click below, 0 otherwise
Browsing features
TimeOnPage Page dwell time

4. IMPLICIT USER FEEDBACK M ODEL

CumulativeTimeOnPage

Cumulative time for all subsequent pages after

search

Our goal is to accurately interpnatisy user feedback obtained ag

'TimeOnDomain

Cumulative dwell time for this domain

by tracing user interactions with the search engine. Intengret

ITimeOnShortUrl

Cumulative time on URL prefix, norgmeters

implicit feedback in real web search setting is not an easly t

We characterize this problem in detail in [1], where we vatsi

and evaluate a wide variety of models of implicit useiviigs.

IsFollowedLink 1 if followed link to result, O othgise

IsExactUrIMatch 0 if aggressive normalization usedtherwise
IsRedirected 1 if initial URL same as final URLotherwise
IsPathFromSearch 1 if only followed links after gu® otherwise

The general approach is to represent user actions for ez s

ClicksFromSearch

Number of hops to reach page foeny

result as a vector of features, and then train a ranker e th

KverageDwellTime

Average time on page for this guer

features to discover feature values indicative of reletamd non-

DwellTimeDeviation

Deviation from average dwell ron page

relevant) search results. We first briefly summarize features

CumulativeDeviation

Deviation from average cumwiatiwell time

and model, and the learning approach (Section 4.2) in orde

DiSmainDeviation

Deviation from average dwell timedpmain

provide sufficient information to replicate our ranking method

@uery—text features

and the subsequent experiments.

4.1 Representing User Actions as Features

TitleOverlap Words shared between query and title
SummaryOverlap Words shared between query andesnipp
QueryURLOverlap Words shared between query and URL

We model observed web search behaviors as a combination

afudryDomainOverlap

Words shared between query &iddémain

““background” component (i.e., query- and relevance-independjghierylLength

Number of tokens in query

noise in user behavior, including positional biases with res|@ueryNextOverlap

Fraction of words shared with rgry

interactions), and a “‘relevance” component (i.e., queryifspec Table 4.1: Some features used to represent post-search
behavior indicative of relevance of a result to a quatig.design navigation history for a given query and search result URL.

our features to take advantage of aggregated user beh@ker.
feature set is comprised dfrectly observed features (computed

directly from observations for each query), as well as yguer

Having described our feature set, we briefly review our iggne

specific derived features, computed as the deviation from th@'ethod for deriving a user behavior model.

overall query-independent distribution of values for th

corresponding directly observed feature values.

e

4.2 Deriving a User Feedback M odel

The features used to represent user interactions with wethseafy, |eam to interpret the observed user behavior, we ctereter
results are summarized in Table 4.1. This information Wagyions (i.e., the features in Table 4.1 representing thenajti
obtf':uned via opt-in cl_lent-5|de instrumentation from users of \gih the explicit user judgments for a set of training quenis.

major web search engine. find all the instances in our session logs where these quesies

We include the traditional implicit feedback features such asibmitted to the search engine, and aggregate the user behavior
clickthrough counts for the results, as well as our novelveeri features for all search sessions involving these queries.

features such as the deviation of the observed clickthrough numpekh opserved query-URL pair is represented by the features in
for a given query-URL pair from the expected number of clicks Orgpie 4.1, with values averaged over all search sessiods, a

a result in the given position. We also model the browsingsigned one of six possible relevance labels, ranging from
behaviorafter a result was clicked — e.g., the average page dwePa fect” to “Bad”, as assigned by explicit relevance judgime

time for a given query-URL pair, as well as its deviatiom the  Thege |abeled feature vectors are used as input to the RankNet
expected (average) dwell time. Furthermore, the featur&/a®t i 5ining algorithm (Section 3.3) which produces a trained user



behavior model. This approach is particularly attractivé dees « NDCG at K: NDCG is a retrieval measure devised specifically
not require heuristics beyond feature engineering. The resultingfor web search evaluation [10]. For a given qugrihe ranked
user behavior model is used to help rank web search results results are examined from the top ranked down, and the NDCG
either directly or in combination with other features, a<iilesd computed as:
below. .

N, =M > 27 -1 /logd+ )
5. EXPERIMENTAL SETUP i=1
The ultimate goal of incorporating implicit feedback into ragki  \ypere M, is a normalization constant calculated so that a
is to improve the relevance of the returned web search sesult herfect ordering would obtain NDCG of 1; and eaf is an
Hence, we compare the ranking methods over a large setgeq integer relevance label (0="Bad” and 5="Perfect”) of result

queries with explicit relevance labels provided by human judges. ot med at position Note that unlabeled and “Bad” documents
In order for the evaluation to be realistic we obtainednalgm do not contribute to the sum. but will reduce NDCG for the

sample of queries from web search logs of a major semgine, 4 ery pushing down the relevant labeled documents, reducing
Wl_th assoma_ted res_,ults and traces_ for user act_lons._ _V\tmtnms their contributions. NDCG is well suited to web search
this dataset in detail next. Our metrics are described imo8exL evaluation, as it rewards relevant documents in the top ranked
that we use to evaluate the ranking alternatives, listecdétidh results more heavily than those ranked lower.

5.3 in the experiments of Section 6. o ] )
* MAP: Average precision for each query is defined as the mean

5.1 Datasets of the precision at K values computed after each relevant

We compared our ranking methods over a random sample of 3,00@ocument was retrieved. The final MAP value is defined as the
queries from the search engine query logs. The queries weremean of average precisions of all queries in the tesThit.

drawn from the logs uniformly at random by token without metric is the most commonly used single-value summary of a
replacement, resulting in a query sample representative of therun over a set of queries.

overall query distribution. On average, 30 results were enplici

labeled by human judges using a six point scale ranging fram3 Ranking M ethods Compared

“Perfect” down to “Bad". Overall, there were over 83,000MS  pacq) that our goal is to quantify the effectivenessnaplicit

with explicit relevance judgments. In order to compute Varioyg,payior for real web search. One dimension is to compare the
statistics, documents with label *Good” or better will bejiv of implicit feedback with other information availabto a

’(ilonsmﬁredh”relevan_t”, and with Iow?r Iab((ejls to beh“non-rené\/a web search engine. Specifically, we compare effectivernéss
ote that the experiments were performed over the resubtzad! implicit user behaviors with content-based matching, statie pag

highly ranked by a web search engine, which corresponds tq] lity features, and combinations of all features.
typical user experience which is limited to the small numbéhneof _
highly ranked results for a typical web search query. ¢ BM25F: As a strong web search baseline we used the BM25F

scoring, which was used in one of the best performing systems
in the TREC 2004 Web track [23,27]. BM25F and its variants
have been extensively described and evaluated in IR literature,
and hence serve as a strong, reproducible baseline. The BM25F
variant we used for our experiments computes separate match
scores for each “field” for a result document (e.g., bady,t

title, and anchor text), and incorporates query-independent link-
based information (e.g., PageRank, ClickDistance, and URL
depth). The scoring function and field-specific tuning is
To create the training, validation, and test query setssrasted described in detail in [23]. Note that BM25F does not directly
three different random splits of 1,500 training, 500 validation, and consider explicit or implicit feedback for tuning.

1000 test queries. The splits were done randomly by query,
there was no overlap in training, validation, and test queries.

The user interactions were collected over a period of &svee
using voluntary opt-in information. In total, over 1.2 mitlio
unique queries were instrumented, resulting in over 12 million
individual interactions with the search engine. The data codsiste
of user interactions with the web search engine (e.g., cjain a
result link, going back to search results, etc.) performest af
query was submitted. These actions were aggregated acerss us
and search sessions and converted to features in Table 4.1.

S0 t-hahN: The ranking produced by a neural net ranker (RankNet,
described in Section 3.3) thi@arns to rank web search results
5.2 Evaluation Metrics by incorpor_ating BM25F anq a large number of additione_ll static
We evaluate the ranking algorithms over a range of accepted®"d dyn_amlllc f?atures de;c;:bmfg eac"h ?earch res_ult.l -l;jh's syﬁtem
information retrieval metrics, namelrecision at K (P(K)), automatically learns weights for all features (including the

Normalized Discounted Cumulative Gain (NDCG), and Mean BM25F score for a document) basedeplicit human labels

Average Precision (MAP). Each metric focuses on a deferent _for Ia Iartg(te_ setfc;: qkul\(lerltes. A Sysﬂte”.‘ |ncor%orat|ng an
aspect of system performance, as we describe below. implementation of ‘RankiNet IS currently in use by a major

« Precision at K: As the most intuitive metric, P(K) reports the search engine and can be considered representative of the state

fraction of documents ranked in the top K results that are of the art in web search.

labeled as relevant. In our setting, we require a relevant BM25F-RerankCT: The ranking produced by incorporating
document to be labeled “Good” or higher. The position of clickthrough statistics to reorder web search results ranked by
relevant documents within the top K is irrelevant, and hence BM25F above. Clickthrough is a particularly important special
this metric measure overall user satisfaction with the Ko case of implicit feedback, and has been shown to correlate wit
results. result relevance. This is a special case of the rankinigathém



Section 3.1, with the weighti set to 1000 and the rankihg We first experimented with different methods of re-ranking the
is simply the number of clicks on the result correspondirty to output of the BM25F search results. Figures 6.1 and 6.2 report
In effect, this ranking brings to the top all returned web seartNDCG and Precision for BM25F, as well as for the strategi
results with at least one click (and orders them in decreasirgganking results with user feedback (Section 3.1). Incorporating
order by number of clicks). The relative ranking of thell user feedback (either in reranking framework or as fesitiore
remainder of results is unchanged and they are inserted bekbw learner directly) results in significant improvementsnis

all clicked results. This method serves as our baselinedinplitwo-tailed t-test with p=0.01) over both the original BM25F
feedback reranking method. ranking as well as over reranking with clickthrough alone. The

BM 25F-RerankAll The ranking produced by reordering theimprovement is consistent across the top 10 results andtléoges

BM25F results usingall user behavior features (Section 4).I)h§ltg P frﬁf u”:riNi[r:CIGr at I% for %MZSF.J'.A I Ist 2.6_22_|co|m pared to
This method learns a model of user preferences by conglati; 0’ the original resuts, and precision at L simiiariytases

feature values with explicit relevance labels using the Rank r?m 0.5 to 0.63. Based on these results we will use the direct

neural net algorithm (Section 4.2). At runtime, for a giVeneature combination (i.e., BM25F+All) ranker for subsequent

query the implicit scoré, is computed for each resultwith comparisons involving implicit feedback.
available user interaction features, and the implicit ranlsng i 0.68
produced. The merged ranking is computed as described in

. . 0.66

Section 3.1. Based on the experiments over the development se

we fix the value ofw to 3 (the effect of the wparameter for 0.64 1

this ranker turned out to be negligible). 0.62 1
Q 0.6

e BM25F+All: Ranking derived by training the RankNet 8
(Section 3.3) learner over the features set of the BM26fesc | = 0-58 ]

as well as all implicit feedback features (Section 3.2).uakd 0.56 —o— BM25

the 2-layer implementation of RankNet [5] trained on the 0.54 —8— BM25-Rerank-CT

queries and labels in the training and validation sets. 0.52 1 & Emggﬁﬁra”k‘/*"
¢ RN+AIl: Ranking derived by training the 2-layer RankNet 0.5 ‘ ‘ ‘ ‘ ‘

ranking algorithm (Section 3.3) over the union of all content, 1 2 3 4 5,6 7 8 9 10

dynamic, and implicit feedback features (i.e., all of théufess
described above as well as all of the new implicit feedback rjgyre 6.1: NDCG at K for BM25F, BM 25F-Rer ankCT
features we introduced). BM 25F-Rer ank-All, and BM 25F+All for varying K
The ranking methods above span the range of the information used
for ranking, from not using the implicit or explicit feedbacka#t

(i.e., BM25F) to a modern web search engine using hundreds of 0.65 —o— BM25
features and tuned on explicit judgments (RN). As we will show —5— BM25-Rerank-CT
next, incorporating user behavior into these ranking systems 061 —A— BM25-Rerank-All
dramatically improves the relevance of the returned documents. c 0.55 —o— BM25+All
o
6. EXPERIMENTAL RESULTS 5 051
Implicit feedback for web search ranking can be exploited in a §0.45 |
number of ways. We compare alternative methods of exploiting
implicit feedback, both by re-ranking the top results (i.e., the 0.4
BM25F-RerankCT and BM25F-RerankAll methods that reorder
BM25F results), as well as by integrating the implicit deas 0.35
directly into the ranking process (i.e., the RN+ALL and 1 3 K 5 10

BM25F+All methods which learn to rank results over the implici
feedback and other features). We compare our methods oveg stro Figure 6.2: Precision at K for BM25F, BM 25F-RerankCT,
baselines (BM25F and RN) over the NDCG, Precision at K, and BM25F-Rerank-All, and BM25F+All for varying K

MAP measures defined in Section 5.2. The results were aderage

over three random splits of the overall dataset. Each split ) ) ) ) o o
contained 1500 training, 500 validation, and 1000 test queries, fierestingly, using clickthrough alone, while giving significa
query sets disjoint. We first present the results ovetGD test Penefit over the original BM25F ranking, is not as effectige
queries (i.e., including queries for which there are no implicionsidering the full set of features in Table 4.1. While weyaea
measures so we use the original web rankings). We then dHfier Pehavior (and most effective component features) in a
down to examine the effects on reranking for the attemptS§Parate paper [1], it is worthwhile to give a concretengi@ of
queries in more detail, analyzing where implicit feedback mrovéhe _klnd of noise inherent in real user feedback in web search
most beneficial. setting.



1 Furthermore, enriching the RN features with implicit feedba&tk s

0.9 1 W PTR=2 exhibits significant gain on all measures, allowing RN+All t
z 081 O PTR=3 outperform all other methods. This demonstrates the
g o7 complementary nature of implicit feedback with other features
= 22 0 PTR=5 available to a state of the art web search engine.
£ o] 065 “5 RN
& 02/ —a— RN+AIl
on] 0.6 - —o—BM25
o —e— BM25+Al
. 2 s 5 S 0.55 -
Result position z
[&]
. . . . . Q 05
Figure 6.3: Relative clickthrough frequency for queries with o
varying Position of Top Relevant result (PTR). 0.45 1
. . 0.4
If users considered only the relevance of a result to thesry, 1 3 5 10
they would click on the topmost relevant results. Unfortunatedy K

Joachims and others have shown, presentation also influences o

which results users click on quite dramatically. Usersnoftek ~ Figure6.5: Precision at K for BM25F, BM25F+All, RN, and
on resultsabove the relevant one presumably because the short RN+AII for varying K

summaries do not provide enough information to make accurate

relevance assessments and they have learned that on aegrag
ranked items are relevant. Figure 6.3 shows relative clmlgfr

frequencies for queries with known relevant items at positioriggr each system. While not intuitive to interpret, MAPoakb

?;qeé)tﬁgggrs ffrl(r)sr; pzoi'(t)'oig; ttr?ee fﬁ’;jrlgon :;:Zi:;fplrglef?ﬂ:geri quantitative comparison on a single metric. The gains markéd w
L - A : * are significan =0.01 level using two tailed t-test.
with first relevant result at position 5 (PTR=5), there amare are significant at p=0.0 9

clicks on the non-relevant results in higher ranked positions than
on the first relevant result at position 5. As we will,Searning MAP [ Gain | P(D) | Gain
over a richer behavior feature set, results in substardtairacy
improvement over clickthrough alone.

e\/\tie summarize the performance of the different ranking methods
in Table 6.1. We report the Mean Average Precision (MAB)es

BM25F 0.184| - ]0.503 -

*} *
We now consider incorporating user behavior into a much richer [BM25F-Rerank-CT 0.21§0.031%0.577) 0.073
feature set, RN (Section 5.3) used by a major web searcheengi [BM25F-Rerankimplicit| 0.21¢ 0.003[0.605( 0.028*

RN incorporates BM25F, link-based features, and hundreds of -, 0.004| 0.620| 0015+
i : BM25F+Impl .222 | Y- . .

other features. Figure 6.4 reports NDCG at K and Figure 6.5 SF+Iimplicit 0

reports Precision at K. Interestingly, while the origirkiN RN 0.215( - [0.597 -

rankings are significantly more accurate than BM25F alone, [RN+All 0.248 |0.0334 0.629| 0.032*

incorporating implicit feedback features (BM25F+All) resuits i
ranking that significantly outperforms the original RN rankirigs.
other words, implicit feedback incorporates sufficient infdioma

to replace the hundreds of other features available to the RankNgt, tar we reported results averaged acedssjueries in the test

Table 6.1: Mean Average Precision (MAP) for all strategies.

learner trained on the RN feature set. set. Unfortunately, less than half had sufficient interactims

07 attempt reranking. Out of the 1000 queries in test, between 46%
0.68 | and 49%, depending on the train-test split, had sufficient
0.66 | interaction information to make predictions (i.e., there atdgast
0.64 1 search session in which at least 1 result URL was clickday o

© 0.62 the user). This is not surprising: web search is heavy-tadled,

8 0.6 - there are many unique queries. We now consider the performance

Z 0.58 on the queries for which user interactions were availabgir€i
0.56 -| —=—RN 6.6 reports NDCG for the subset of the test queries with the
0.54 :FB{,\NAEQ" implicit feedback features. The gains at top 1 are draniHtie.
0.52 —e— BM25+All NDCG at 1 of BM25F+All increases from 0.6 to 0.75 (a 31%
0.5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ relative gain), achieving performance comparable to RN+All

12 3 4 5¢6 7 8 9 10 operating over a much richer feature set.

Figure 6.4: NDCG at K for BM25F, BM25F+All, RN, and
RN+AII for varying K
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Figure 6.6: NDCG at K for BM25F, BM25F+All, RN, and

RN+AII on test queries with user interactions

We now analyze the cases where implicit feedback was shown
most helpful. Figure 6.8 reports the MAP improvements over the
“baseline” BM25F run for each query with MAP under 0.6. Note
that most of the improvement is for poorly performing querie
(i.,e., MAP < 0.1). Interestingly, incorporating user behavior
information degrades accuracy for queries with high originaPM
score. One possible explanation is that these “easy” querniés t
to be navigational (i.e., having a single, highly-ranked most
appropriate answer), and user interactions with lower-ranked
results may indicate divergent information needs that arerbett
served by the less popular results (with correspondingly poor
overall relevance ratings).

‘ C— Frequency —e&— Awerage Gain ‘

350

Similarly, gains on precision at top 1 are substantial (Eigur), 300 -
and are likely to be apparent to web search users. When implic|,5q

feedback is available, the BM25F+All system returns relevant

document at top 1 almost 70% of the time, compared 53% of th
time when implicit feedback is not considered by the original|150 + -

BM25F system.

Figure 6.7: Precision at K NDCG at K for BM 25F,
BM25F+All, RN, and RN+AIl on test queries with user

interactions

200 1 -
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0.7 =— RN 0
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0.65 A —o— BM25
—¢— BM25+Al Figure 6.8: Gain of BM 25F+All over original BM25F ranking
S 06 |
2
§o.55— To summarize our experimental results, incorporating implicit
a feedback in real web search setting resulted in significant
0.5 | improvements over the original rankings, using both BM25F and
RN baselines. Our rich set of implicit features, such @& thn
0.45 ‘ page and deviations from the average behavior, provides
1 3 K 5 10 advantages over using clickthrough alone as an indicator of

interest. Furthermore, incorporating implicit feedback festur
directly into the learned ranking function is more effectivant
using implicit feedback for reranking. The improvements observed
over large test sets of queries (1,000 total, between 466 and 495
with implicit feedback available) are both substantial and
statistically significant.

We summarize the results on the MAP measure for attempted
queries in Table 6.2. MAP improvements are both substantial and
significant, with improvements over the BM25F ranker mo

P romouneed. 7. CONCLUSIONS AND FUTURE WORK

Method MAP| Gain P(1) Gain
RN 0.269 0.632
RN-+Al 0.321 |0.051 (19%)|0.693|0.061(10%)
BM25F 0.236 0.525
BM25F+All | 0.292 |0.056 (24%)]0.687(0.162 (31%)

Table 6.2 Mean Average Precision (MAP) on attempted

queriesfor best performing methods

In this paper we explored the utility of incorporating noispliit
feedback obtained in a real web search setting to improve web
search ranking. We performed a large-scale evaluation30660
queries and more than 12 million user interactions with a major
search engine, establishing the utility of incorporating “rioisy
implicit feedback to improve web search relevance.

We compared two alternatives of incorporating implicitdfesck

into the search process, namely reranking with implicit feddbac
and incorporating implicit feedback features directly into the
trained ranking function. Our experiments showed significant
improvement over methods that do not consider implicit feedback.
The gains are particularly dramatic for the #pl result in the

final ranking, with precision improvements as high as 31%, and
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