
Improved String Matching Under Noisy Channel
Conditions

Kevyn Collins-Thompson‡

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052 USA
kevynct@microsoft.com

Charles Schweizer
Dept. of Electrical and Computer

Engineering
Duke University

Durham, NC 27708 USA
cbs2@ee.duke.edu

Susan Dumais
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
sdumais@microsoft.com

ABSTRACT

Many document-based applications, including popular Web
browsers, email viewers, and word processors, have a “Find on
this Page” feature that allows a user to find every occurrence of a
given string in the document. If the document text being searched
is derived from a noisy process such as optical character
recognition (OCR), the effectiveness of typical string matching
can be greatly reduced. This paper describes an enhanced string-
matching algorithm for degraded text that improves recall, while
keeping precision at acceptable levels. The algorithm is more
general than most approximate matching algorithms and allows
string-to-string edits with arbitrary costs. We develop a method
for evaluating our technique and use it to examine the relative
effectiveness of each sub-component of the algorithm. Of the
components we varied, we find that using confidence information
from the recognition process lead to the largest improvements in
matching accuracy.

General Terms
Algorithms, Measurement.

Keywords

Approximate String Matching, Information Retrieval Evaluation,
Noisy Channel Model, Optical Character Recognition.

1. INTRODUCTION

In this paper we describe an enhanced version of the standard
string search feature available in many document viewing and
editing applications. This feature allows the user to find every
occurrence of a given word or phrase within a single document.
Our algorithm can reliably detect correct matches even when there

are multiple errors in the underlying text, providing a useful
increase in recall while maintaining acceptable precision.
This is important for documents whose text is directly obtained
from processes such optical character recognition (OCR). Since
the recognition process will occasionally mis-recognize letters or
combinations of letters with similar shapes, errors appear in the
resulting text. Typical error rates on a high-quality image can
vary widely depending on the complexity of the layout, scan
resolution, and so on. On average, for common types of
documents, error rates for OCR are often in the range of 1% to
10% of the total characters on the page.

Our approach, described in detail in section 3, is to pre-filter
initial match candidates using an existing fast approximate match
procedure. We then score each candidate using an error model
based on the noisy channel model of Shannon [SHAN48]. In
section 4 we present a technique for evaluating the algorithm at
various parameter settings to examine the effectiveness and
tradeoffs of our model.

2. RELATED WORK

The problem of evaluating and improving retrieval performance
on degraded text has been widely studied.
Most of this work has focused on known-item or ranked
document retrieval using a pre-computed index. For example, the
TREC 4 and 5 OCR confusion tracks [4] and more recent TREC
Spoken Document Retrieval evaluations [2], have been the basis
for several studies. In general, document retrieval as measured by
usual precision and recall methods is fairly robust in the face of
OCR recognition errors, assuming relatively good scanned images
[13] [15]. This is because a document usually consists of many
occurrences of individual words, many of which will be correctly
recognized. An extensive analysis of the effect of OCR errors and
other types of data corruption on information retrieval can be
found in Mittendorf [6]. Specific application examples include
the video mail retrieval system of Jones et al. [3], and a spoken
document retrieval system developed by Ng [9].

‡ Author may now be reached at: School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA 15232 USA.
E-mail: kct@cs.cmu.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM ’01, November 5-10, 2001, Atlanta, Georgia, USA.
Copyright 2001 ACM 1-58113-320-0/00/11 …$5.00.

In contrast to document retrieval, we are interested in the situation
where we wish to find every instance of a word or phrase within a
single document very quickly. The “Find on this Page” option in
popular Web browsers or Microsoft Office applications are
examples of the functionality we wish to support. In our
application, recognition errors will cause retrieval failures and
thus we need to use approximate matching techniques.
The literature on approximate string matching is extensive. A
good overview may be found in [8]. Most approaches use an ‘edit
distance’ model of errors in which single character insertions,
deletions, and substitutions are allowed, with different costs
associated with the different transformations. The popular
approximate matching tool agrep [14], and the string similarity
techniques of Ristad and Yianalos [11] can both accept fairly
sophisticated error model descriptions, but are not quite as general
as our algorithm, which can use string to string edits with
arbitrary costs as well as make use of optional confidence data and
language models. Brill et al. use this more general model for
automatic spelling correction [1]. Some commercial OCR
products such as zyFind™ [16] have incorporated an error-
tolerant phrase search based on simple edit distance, but these
features are equivalent to just using the first pass of our algorithm.
Most of the work on approximate string matching examines the
computational complexity of algorithms. There has been
comparatively little work that applies the more complex
recognition error models and evaluates their accuracy in a
systematic fashion as we do in this paper.

3. ALGORITHM DESCRIPTION

The algorithm begins with the following inputs:
� A clean query string, without typographical or other errors.
� The document text to be searched, which includes OCR

errors.
� An initial threshold value that indicates the error tolerance to

be used for finding initial candidates.
� A confusion set describing the most likely types of OCR

errors, along with their edit costs.
� Optionally, a table giving the confidence (likelihood of

correctness) for each character and/or word in the OCR text.
� A final threshold value used to set the maximum acceptable

edit cost.
To find each match, our algorithm passes through four phases, as
shown in Figure 1. First, a standard fast approximate-string-match
algorithm is used as a pre-filter to obtain match candidates. The
key property of this step is that it eliminates unlikely matches very
quickly.
Second, once the pre-filter identifies a possible match candidate,
we perform a noisy channel analysis, using a dynamic
programming algorithm to examine all possible partitioning
alternatives to select optimal candidates.
Third, an optional OCR confidence table is used, along with
optional word-based heuristics and language model, to adjust the
candidate’s score.

Figure 1. Algorithm Flow Diagram

Finally, we make a final match determination based on whether
the candidate’s score exceeded a final threshold.
Each of these phases is described in detail in the following
sections.

3.1 Pre-filtering

To find initial match candidates we use a standard approximate
string matching routine with a “generous” maximum error
threshold. We use a variant of the method developed by Myers in
[7]. His algorithm has been optimized for speed and to use
minimal storage space.
The final result of this phase is a set of match candidates, each
described by a position and a length relative to the input buffer.

3.2 Noisy Channel Cost Analysis

The noisy channel model is one in which source data (for
example, the original document text, encoded as an image) is
perturbed by noise introduced during a channel process (scanning
and OCR), thereby introducing errors into the output data (OCR
output text). The result of noisy channel analysis is a probability
estimate that a query matches the candidate found in the pre-filter
phase.
We model the channel noise introduced during OCR by learning a
confusion set of typical string-to-string edits. For example, the
letter bigram “rn” in the original document is often output as the
single letter “m” in the OCR document. Typically the entries in
the confusion set comprise combinations of no more than three or
four letters, although this is a practical restriction invoked during
training, not a limitation of the algorithm.
Each string-to-string edit in the confusion set has an associated
probability, namely, the posterior probability p(s | R), where s
represents the original string and R is the corresponding
erroneous OCR string. This value is obtained via Bayes Theorem,
in which, ignoring the constant denominator, p(s | R) is given by
p(R | s) · p(s). The training process by which we obtain estimates
for p(R | s) and p(s) is described in section 3.3. We take the
negative logarithm of p(R | s) and call this the edit cost of the
string-to-string edit. It is stored in the confusion set with the
corresponding edit entry. A sample confusion set is shown in
Table 1.

Document
Text Approximate

Match Pre - filter

Query Confusion
Set

Confidence Data
(if available)

Initial
Threshold

Noisy Channel
Cost

Analysis
Word Heuristics

(optional)
Language Mod el

(optional)

Match Decision
Final

Threshold

Given a confusion set C of m entries
{s1 → R1, s2 → R2, …, sm → Rm}

which have corresponding edit costs {c1, c2, …, cm}, a query term
Q, and a candidate match T in the OCR text, we can calculate the
probability that Q matches T as follows.
First, let us assume that we have already have a partitioning of the
query into n substrings {Q1, Q2, …, Qn}, such that for each Qi,
there is a corresponding set of characters Ti in T (possibly empty).
If there is more than one possible confusion set entry that matches
Qi and Ti, we choose the one with lowest cost . Exactly one of
these possibilities is satisfied for each Qi:
1. Qi maps without errors to its counterpart Ti , with
probability pCORRECT(Qi).
2. Qi has an entry in the confusion set such that it maps to
Ti according to the entry sj → Rj, with probability ci.
3. Qi maps to some set of characters Ti, but this mapping is
not in the confusion set and hence is modeled by a series of single
character insertions, deletions, or substitutions. The probabilities
of these operations may vary for individual characters, but for
simplicity we denote the overall probabilities as pINSERT(Qi),
pDELETE(Qi) and pSUBST(Qi) respectively.
If we denote the set of all possible partitions of Q by Part(Q), and
assume the transformations are all independent, then we want the
most likely of all possible partitions, hence:

p(Q | T) =
)(

maxarg
QPartD ∈

∏
∈DQi

p(Qi → Ti)

After expanding the term p(Qi → Ti) in terms of the probabilities
for the possibilities above, and taking the negative logarithm, we
have an expression for the total edit cost CTOTAL for the
transformation of Q to T:

CTOTAL =
)(

minarg
QPartD ∈
∑

∈
−

DQa

log pCORRECT(Qa)

+ ∑
∈

−
DQb

log cb + ∑
∈

−
DQc

log pINSERT (Qc)

+ ∑
∈

−
DQd

log pDELETE (Qd) + ∑
∈

−
DQe

log pSUBST (Qe).

We obtain the most likely partitioning of the query string using a
dynamic programming algorithm, setting the costs of pINSERT,
pDELETE and pSUBST using statistics derived from the training phase.

For a concrete example, suppose we are searching for the string
“amendment” and come across the document text
“arneadme,nt”. For this example we set pCORRECT (x) = 0.9,
pINSERT (x) = pSUBST (x) = 0.1, pDELETE (x) = 0.01 for all strings x,
and use the edit costs from Table 1.

s → R - log p(R | s)
(edit cost)

am → arn 1.074

en → ea 0.956

en → e,n 4.400

nt → at 1.013

end → ead 0.708

end → eud 2.508

men → rnea 0.858

me →me, 1.211

Table 1. Example Confusion Set

We have several different ways that the word “amendment” can be
partitioned based on this table. For example:

1. am | end | me | nt
2. a | men | d | me | nt

In the first case above, the total edit cost to transform “am | end |
me | nt” into the corresponding OCR strings “arn | ead | me, | nt”
would be calculated as follows.

C1 = - log p(am→ arn) - log p(end → ead) - log p(me→ me,) - log

pCORRECT (nt→nt)
 = 1.074 + 0.708 + 1.211 + 0.105 = 3.098
Compare this to the optimal partitioning, “a | men | d | me | nt”,
which gives:
C2 = - log pCORRECT (a→ a) - log p(men → rnea) - log pCORRECT
(d→ d) - log p(me → me,) –log pCORRECT (nt→nt)
 = 0.105 + 0.858 + 0.105 + 1.211 + 0.105 = 2.384
These edit cost values are passed to the third phase for possible
adjustment before the comparison to the final threshold.
With the final threshold set to 0.300, and 9 characters in the query
term, the threshold for this query is 9 · 0.300 = 2.700. If no other
modifications to the final threshold or costs are made, case 2
would be considered a valid match since the candidate cost of
2.384 is less than the final threshold of 2.700. Case 1 would not
be considered a valid match since its score of 3.098 is greater than
the final threshold of 2.700.

3.3 Training the Model
To train our noisy channel error model we selected a subset of
files not used in the evaluation, amounting to approximately 20%
of the total text size in each corpus.
Using this sub-collection, we ran a processing pass similar to that
used for evaluation in section 4, but using a high error tolerance –
typically with an expected error rate of 3 errors every 4 characters.
Using the syntactic signature method described in Section 4, we
extract the correct matches from these results to get a set of pairs
(S, T) where S is a word from the ground-truth file and T is the
corresponding noisy OCR word.

For each (S, T) pair, we found the greatest common substrings
between S and T, from which we derived an initial set of possible
edits. We then expanded this set using up to 3 characters of
context on either side of the edit, for both the ground-truth word
and the OCR word. For each edit s → R in this expanded set, we
kept track of the edit’s overall frequency, the frequency of all
other edits based on s, and the total frequency of s in the corpus.
From this we calculate p(R | s) and thus the edit cost

c = –log p(R | s).
We also calculate p(s) and then select the most useful edits –
those with the highest values of p(R | s) · p(s). For our
experiments we kept the top 2500 edits.

3.4 Optional Processing

In the third phase, we make use of confidence information and
heuristics to adjust the candidate’s edit cost.

3.4.1 Word Heuristics

Since users often search on one or more complete words, the
algorithm can be modified to include position-based probabilities
that reflect the importance that a match be close to a complete
word or word prefix. For our experiments we tested for either
punctuation or whitespace at the start and end of a match, and
reduced error costs by 0.25 for a word prefix match and 0.50 for
an entire word match.

3.4.2 Language Models

Even when we do not have confidence information from the
recognizer, we can calculate a rough confidence estimate based on
simple language models. Since our documents were in English,
we used a frequency table of English bigrams (obtained on a
separate training corpus) and gave either a “low” or “high”
confidence estimate to any words containing at least one “rare”
bigram or none, respectively.

3.4.3 Using Confidence Data

If the recognition process provides character or word-level
confidence data, we can use this information. We do this by
increasing edit costs in the noisy channel model according to a
region’s confidence value. For high-confidence regions, this
essentially reduces to performing exact matching. The
recognition engine may sometimes give an indeterminate
confidence value for a word, in which case the language model
may be optionally invoked to supply an estimate. Ideally, we
would make use of character-level confidence data, and plan to do
so in future versions. Our current implementation only stores
word-level confidence data in the document to reduce the file size.

3.5 Match Decision

In the fourth phase, we compare the final threshold against the
match candidate’s score. If the candidate’s score is above the
final threshold, it is not counted as a match.

4. EVALUATION
4.1 Methodology

We compare baseline word matching performance with our
algorithm using various sub-components such as the OCR
confusion set, word heuristics, and word-level confidence.
We ran experiments using two different test collections.
1. A subset of 5 documents from the TREC-5 confusion
track corpus [4]. These documents are from the 1994 Federal
Register and contain about 160,000 words. This text has no
confidence data available, and the OCR conversion was done by
NIST.
2. A collection of 200 document images with ground truth
text and corresponding OCR text, containing approximately
100,000 English word occurrences. The OCR text contains word-
level confidence scores and was generated using an OCR engine
licensed from Scansoft, Inc.
We perform whitespace-delimited word-breaking and extract
stopwords from the ground truth files to obtain a list of query
terms. For each document, we ask every unique word in the
ground truth document as a ‘query’, giving us approximately
8,600 queries from the first test collection and 15,000 from the
second. We assume that the query is clean, containing no spelling
or typographical errors. There are scenarios where our algorithm
could be useful with queries containing errors but we do not
address those in this paper.
We want to measure how accurately we find each query in the
OCR document. We define a ‘true match’ as a string in the
OCR’d document that matches the corresponding query term in
the ground truth document. Occasionally, mismatches in the
original document are corrupted by the OCR process into strings
that match in the OCR’d document; these are ‘false matches’.
Any query, for which a word exists in the ground truth document,
but which fails to find the corresponding word in the OCR
document, is termed a ‘miss’.
If the numbers of true matches, false matches, and misses are t, f,
and m respectively, then precision p and recall r are derived using
the formulas:

ft
tp

+
= , r =

mt
t

+

We also report van Reijsbergen’s F-measure [10] to provide a
single number that combines precision p and recall r for
evaluation purposes. This is given by:

pr
prF

)1(
)(

αα
α

−+
=

The relative importance given to precision versus recall is
expressed through the parameter α. When α = 0.5, they are given
equal weight. We include two different values of α,
corresponding to neutral (α = 0.5) preferences, and recall-oriented
(α = 0.2), which we believe to be important in ‘find on this page’
applications.
The key problem in evaluating string-matching results on
degraded text is obtaining a reliable correspondence between
words in the ground truth file and their noisy counterparts. A

single word in the original document has a counterpart in the
OCR document, but it may not be obvious what it is. We need to
be able to identify these correspondences in order to distinguish
‘true matches’ and ‘false matches’. Ideally, we would compare
the geometric positions of the corresponding words in the image,
but this kind of positional data is not currently available in either
of our test sets.
To solve this problem, we construct a syntactic signature for each
word using N non-whitespace characters immediately leading or
following the word. In practice we use a value for N of 20. To
test if a word occurrence in the truth file is the same as one
occurring in the degraded file, their signatures are compared
according to a simple edit distance . In this matching process we
allow a relative error tolerance that is twice the average OCR error
rate. While this signature is theoretically not unique, in practice it
works very well to compare word occurrences quickly. We search
for each query term in both the ground truth file and the
corresponding OCR file and compare the two result lists using the
syntactic signature. With this matching, we can identify
corresponding words in the ground truth and OCR documents.

4.2 Results for TREC-5 Confusion Track
Files
The measurements on our subset of the TREC confusion corpus
are shown below in Table 2. The exact matching score is the
accuracy obtained by exact matching of the query string to the
OCR text. The baseline measurement uses only the first phase of
our algorithm to perform simple approximate matching without an
error model. We were primarily interested in the effectiveness of
adding a trained error model for edit costs and a general language
model for estimating word-level confidence, and the relative
contributions of each. We evaluated the effectiveness of adding
the word heuristic but found no differences, so the results are
omitted here for simplicity. We also varied the final match
threshold to allow for different error cost tolerances. The best-
performing parameters for each F value are shown in bold.
Because the number of queries is large, even small differences in
F are statistically significant. For the TREC collection, the
average standard error about the mean is .000295, so differences
that are .0005782 or larger are significant at the .05 level; for the
In-House collection, the average standard error about the mean is
.0000856, so differences that are .0001678 or larger are
significant at the .05 level. We focus our discussion on
differences that are the most interesting theoretically or
practically.
Using a trained error model results in a higher value of both types
of F value for threshold values of 0.200 or less. For recall-
oriented F, the error model gives a useful improvement at
threshold levels of 0.300 and below. Adding the bigram language
model to the trained error model improves performance for
threshold values of 0.300 and 0.400. For recall-oriented F, the
best performance (0.936) is achieved using a fairly high threshold
with the two error correction techniques combined. The F value
of 0.936 represents a 15% improvement over exact matching
(0.812) and a 25% improvement over a simple approximate match
approach.
In general, an effective strategy is to pair sub-components that
mainly boost recall and expand the set of initial candidates with

those that improve precision and are good at eliminating false
matches. For example, addition of the language model gave fairly
consistent improvements in overall accuracy when paired with a
trained error model or a higher threshold.
We also examined the matching accuracy at various query lengths.
An example of these results for a typical document is given in
Figure 2. The high final threshold of 0.900 was used to highlight
the change in precision. Precision of the matches generally
improved as the length of the query increased. This result is
consistent with the fact that for longer English words there are
fewer words that are “close” in terms of edit distance, and thus
there are fewer potential mismatches. The results suggest that
using exact matching or a higher error threshold may be
appropriate for shorter queries, when searching documents with
word error rates comparable to the values we studied.

Precision vs Query Length
For a Sample Document from In-house

Collection
Using a Trained Error Model, Threshold =

0.900

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11 12 13

Que r y Le ngt h (i n Cha r a c t e r s)

Figure 2. Change in Precision with Query Length

4.3 Results for In-House Collection, with
Confidence Information

For our in-house collection of documents, we had word-level
confidence data available from the OCR engine. This is typically
a value between 0 (lowest confidence) and 1000 (highest
confidence). For the purposes of string matching, the confidence
value for any sub-string of a word is approximated by the
confidence value of the word itself.
For this collection we examined the effect of a learned error
model, a language model for estimating confidence, and word-
level confidence available from the recognizer. We also looked at
different final match thresholds and report precision, recall,
neutral-F and recall-oriented F measures. The results are
presented in Table 3.
Incorporating confidence information gave consistently higher
overall accuracy – more than any other single component. Using
confidence information alone provides the largest gains, and
adding the learned error model provides some additional small
advantages for the neutral F and for recall-oriented F at the lowest
threshold.

Table 2. TREC-5 Subset: Word Error Rate = 20%

 Precision Recall
Neutral-

F

% Gain
Over

Baseline

Recall-
Oriented

F

% Gain
Over

Baseline

Exact matching 0.998 0.775 0.873 0.812

Baseline: threshold = 0.100 0.980 0.800 0.881 0.831

+error model 0.992 0.867 0.925 4.99% 0.889 6.98%

+error model, +language model 0.994 0.864 0.924 4.88% 0.887 6.74%

Baseline: threshold = 0.200 0.947 0.857 0.900 0.874

+error model 0.890 0.910 0.900 0.00% 0.906 3.66%

+error model, +language model 0.827 0.913 0.868 -3.56% 0.894 2.29%

Baseline: threshold = 0.300 0.488 0.867 0.624 0.750

+error model 0.750 0.940 0.834 33.65% 0.895 19.33%

+error model, +language model 0.850 0.960 0.902 44.55% 0.936 24.80%

Baseline: threshold = 0.400 0.56 0.950 0.705 0.834

+error model 0.510 0.980 0.671 -4.82% 0.827 -0.84%

+error model, +language model 0.696 0.980 0.814 15.46% 0.906 8.63%

TABLE_3_GOES_HERE: FORMATTING PROBLEMS!

5. CONCLUSIONS

We described an enhanced string-matching algorithm for
degraded text. The algorithm is more general than standard
approximate matching algorithms, allowing string-to-string edits
with arbitrary costs as well as the use of confidence information.
We develop a method for evaluating our technique and use it to
examine the relative effectiveness of each sub-component of the
algorithm. Based on our experiments, we can draw the following
conclusions.
First, for users who weight recall more highly than precision, our
algorithm provides improvement over both exact match and
standard approximate matching without a trained error model.
For users with neutral precision/recall preferences, the benefits are
smaller but still measurable. The improvements were largest for
the TREC collection, which had a higher word error rate.
Second, using confidence data from the OCR engine, when
available, results in the largest improvement in matching
accuracy, compared to using a simple language model or trained
error model alone.
Third, we recommend that the algorithm be applied to longer
query terms only, such as those more than four characters long,
with exact match or a higher error threshold being used for shorter
query terms.
In general, although our algorithm depends on having trained
confusion sets and confidence information to achieve its best
performance, we believe this is entirely appropriate for
applications that rely on a specific recognition engine.
In future work, we intend to use character-level confidence
information in the noisy channel analysis, and we will continue to
explore methods for training better error models. We also intend
to apply this approach to the output from handwriting recognition,
and to include languages other than English in our analysis.

6. ACKNOWLEDGEMENTS

The authors would like to thank Henry Burgess, Rado Nickolov,
Stephen Robertson, and an anonymous reviewer for their helpful
suggestions.

7. REFERENCES

[1] E. Brill and R. C. Moore, “An improved error model for

noisy channel spelling correction,” Proceedings of ACL
2000, Hong Kong, Oct. 2000.

[2] J. Garofolo, C. Auzanne, and E. Voorhees, “The TREC
spoken document retrieval track: A success story,” in Text
Retrieval Conference (TREC) 8, E. Voorhees, Ed.,
Gaithersburg, Maryland, USA, 1999, November 16- 19.

[3] G. Jones, J. Foote, K. S. Jones, and S. Young, “Video mail

retrieval: The effect of word spotting accuracy on precision,”
in Proc. ICA SSF ‘95, Detroit, MI, pp. 309—312, May 1995.

[4] P. Kantor, and E. M. Voorhees, “The TREC-5 Confusion
Track: Comparing Retrieval Methods for Scanned Text”,
Information Retrieval, vol. 2, pp. 165—176, 2000.

[5] K. Marukawa, T. Hu, H. Fujisawa, and Y. Shima,
“Document retrieval tolerating character recognition errors
— evaluation and application,” Pattern Recognition, vol. 30,
no. 8, pp. 1361—1371, 1997.

[6] E. Mittendorf. Data Corruption and Information Retrieval.
PhD thesis, ETH Zürich, Institute of Computer Systems,
January 1998.
ftp://ftp.inf.ethz.ch/pub/publications/dissertations/th12507.ps
.gz

[7] G. Myers. A fast bit-vector algorithm for approximate pattern
matching based on dynamic programming. In Proc
Combinatorial Pattern Matching 98, 1-13, Springer-Verlag,
1998.

[8] G. Navarro. Approximate Text Searching. PhD thesis, Dept. of
Computer Science, Univ. of Chile, December 1998. Technical
Report TR/DCC-98-14. ftp://ftp.dcc.uchile.cl/pub/-
users/gnavarro/thesis98.ps.gz.

[9] K. Ng and V. Zue, “Subword unit representations for spoken
document retrieval,” in Proc. Eurospeech ‘97; Rhodes,
Greece, pp. 1607—1610, Sept. 1997.

[10] C. J. van Rijsbergen. Information Retrieval. Butterworths,
London, 2nd edition, 1979.

[11] E. S. Ristad, P. N. Yianilos, “Learning String Edit Distance,”
Princeton University Research Report CS-TR-532-96, 1996.

[12] C. Shannon, “A mathematical theory of communication,”
Bell System Technical Journal 27(3): 379 – 423, 1948.

[13] K. Taghva, J. Borsack, A. Condit, and S. Erva. The effects
of noisy data on text retrieval. In UNLV Information Science
Research Institute Annual Report, pages 71 – 80, 1993.

[14] S. Wu and U. Manber, “Fast Text Searching Allowing
Errors,” Communications of the ACM, vol. 35, no. 10, pp
83—91, 1992.

[15] C. Zhai, X. Tong, N. Milic-Frayling, and D. Evans, “OCR
correction and expansion for retrieval on OCR data —
CLARIT TREC-5 confusion rack report,” in Proceedings of
Fifth Text REtrieval Conference (TREC-5), Gaithersburg,
MD, USA, Nov. 1996. NIST-SP 500-238.

[16] ZyFind™ – A subsystem of ZyImage™, ZyLAB
International Inc., Rockville, MD. http://www.zylab.com/

