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Overview

Context in search

 “Potential for personalization” framework

 Examples
Personal navigation 

Client-side personalization

Short- and long-term models

Personal crowds

Challenges and new directions
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20 Years Ago … In Web Search

 NCSA Mosaic graphical browser 3 years old, and 

web search engines 2 years old
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20 Years Ago … In Web Search

 NCSA Mosaic graphical browser 3 years old, and 

web search engines 2 years old

 Online presence ~1996

 Size of the web

 # web sites:  2.7k

 Size of Lycos search engine 

 # web pages in index:  54k

 Behavioral logs

 # queries/day: 1.5k

 Most search and logging client-side
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Today … Search is Everywhere

 A billion web sites

 Trillions of pages indexed by search engines

 Billions of web searches and clicks per day

 Search is a core fabric of everyday life 
Diversity of tasks and searchers

Pervasive (web, desktop, enterprise, apps, etc.)

 Understanding and supporting searchers 

more important now than ever before
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Context Improves Query Understanding

 Queries are difficult to interpret in isolation

 Easier if we can model: who is asking, what they have 

done in the past, where they are, when it is, etc.

Searcher: (SIGIR |Susan Dumais … an information retrieval researcher) 

vs. (SIGIR |Stuart Bowen Jr. … the Special Inspector General for Iraq Reconstruction)
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Context Improves Query Understanding

 Queries are difficult to interpret in isolation

 Easier if we can model: who is asking, what they have done 

in the past, where they are, when it is, etc.

Searcher: (SIGIR |Susan Dumais … an information retrieval researcher) 

vs. (SIGIR |Stuart Bowen Jr. … the Special Inspector General for Iraq Reconstruction)

Previous actions: (SIGIR | information retrieval) 

vs. (SIGIR | U.S. coalitional provisional authority)

Location: (SIGIR | at SIGIR conference) vs. (SIGIR | in Washington DC)

Time: (SIGIR | Jan. submission) vs. (SIGIR | Aug. conference)

 Using a single ranking for everyone, in every context, at 

every point in time, limits how well a search engine can do
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Potential For Personalization

 A single ranking for everyone limits search quality

 Quantify the variation in relevance for the same 

query across different individuals
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Teevan et al., SIGIR 2008, ToCHI 2010
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Potential For Personalization

 A single ranking for everyone limits search quality

 Quantify the variation in relevance for the same 
query across different individuals

 Different ways to measure individual relevance

 Explicit judgments from different people for the same query

 Implicit judgments from click entropy or content analysis

 Personalization can lead to large improvements

 Study with explicit judgments

 46% improvements for core ranking

 70% improvements with personalization
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Teevan et al., SIGIR 2008, ToCHI 2010



Potential For Personalization

 Not all queries have high potential for personalization

 E.g., facebook vs. sigir

 E.g., * maps

 Learn when to personalize
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bing maps

google maps



Potential for Personalization

 Query: CIKM

 What is the “potential for personalization”?

 How can you tell different intents apart?

 Contextual metadata

 E.g., Location, Time, Device, etc.

 Past behavior

 Current session actions, Longer-term actions and preferences
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User Models

 Constructing user models

 Sources of evidence

 Content:  Queries, content of web pages, desktop index, etc.

 Behavior: Visited web pages, explicit feedback, implicit feedback

 Context:  Location, time (of day/week/year), device, etc.

 Time frames: Short-term, long-term

 Who: Individual, group

 Using user models

 Where resides: Client, server

 How used: Ranking, query support, presentation, etc.

 When used: Always, sometimes, context learned
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Example 1: Personal Navigation

 Re-finding is common in Web search
 33% of queries are repeat queries

 39% of clicks are repeat clicks

 Many of these are navigational queries
 E.g., facebook -> www.facebook.com

 Consistent intent across individuals

 Identified via low click entropy, anchor text 

 “Personal navigational” queries
 Different intents across individuals … but 

consistently the same intent for an individual

 SIGIR (for Dumais) -> www.sigir.org/sigir2017

 SIGIR (for Bowen Jr.) -> www.sigir.mil

Repeat

Click

New 

Click

Repeat

Query
33% 29% 4%

New

Query
67% 10% 57%

39% 61%
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Teevan et al.,  SIGIR 2007, WSDM 2011

SIGIR

SIGIR

http://www.facebook.com/
http://www.sigir.org/sigir2017
http://www.sigir.mil/


Personal Navigation Details

 Large-scale log analysis (offline)
 Identifying personal navigation queries
 Use consistency of queries & clicks within an individual

 Specifically, the last two times a person issued the query, 
did they have a unique click on same result?

Coverage and prediction
Many such queries: ~12% of queries

 Prediction accuracy high: ~95% accuracy

 High coverage, low risk personalization

 A/B in situ evaluation (online)
Confirmed benefits
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Example 2: PSearch

 Rich client-side model of a person’s interests 
 Model: Content from desktop search index & Interaction history

Rich and constantly evolving user model

 Client-side re-ranking of web search results using model

 Good privacy (only the query is sent to server)
 But, limited portability, and use of community

CIKM 2016

User profile:
* Content

* Interaction history
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Teevan et al., SIGIR 2005, ToCHI 2010



PSearch Details

 Personalized ranking model

 Score: Global web score + personal score

 Personal score: Content match + interaction history features

 Evaluation

 Offline evaluation, using explicit judgments

 Online (in situ) A/B evaluation, using PSearch prototype

 Internal deployment, 225+ people several months

 28% higher clicks, for personalized results

74% higher, when personal evidence is strong

 Learned model for when to personalize
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Example 3: Short + Long

 Long-term preferences and interests

Behavior: Specific queries/URLs

Content: Language models, topic models, etc.

 Short-term context or task

60% of search session have multiple queries

Actions within current session (Q, click, topic) 
 (Q=sigir | information retrieval vs. iraq reconstruction)

 (Q=cikm| knowledge mgt vs. twin star aircraft vs. discount tickets)

 (Q=ego | id vs. eldorado gold corporation vs. dangerously in love) 

 Personalized ranking model combines both
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Bennett et al., SIGIR 2012



Short + Long Details

 User model (temporal extent)

 Session, Historical, Combinations

 Temporal weighting

 Large-scale log analysis 

 Which sources are important?

 Session (short-term): +25% 

 Historic (long-term):  +45% 

 Combinations:          +65-75% 

 What happens within a session?

 1st query, can only use historical

 By 3rd query, short-term features 

more important than long-term 
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Atypical Sessions
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 Example user model

 ~6% of sessions are atypical

 Common topics: Medical (49%), Computers (24%)

 Tend to be more complex, and have poorer quality results

 What you “need” to do vs. what you “choose” to do

Eickhoff et al., WSDM 2013

55% Football (“nfl”,”philadelphia eagles”,”mark sanchez”)

14% Boxing (“espn boxing”,”mickey garcia”,”hbo boxing”)

9% Television (“modern familiy”,”dexter 8”,”tv guide”)

6% Travel (“rome hotels”,“tripadvisor seattle”,“rome pasta”)

5% Hockey (“elmira pioneers”,”umass lax”,”necbl”)

New Session 1:
Boxing (“soto vs ortiz hbo”)

Boxing (“humberto soto”)

New Session 2:
Dentistry (“root canal”)

Dentistry (“dental implant”)

Healthcare (“dental implant recovery”)



Atypical Sessions Details
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 Learn model to identify atypical sessions

 Logistic regressions classifier

 Apply different personalization models for them

 If typical, use long-term user model

 If atypical, use short-term session user model

 Change in precision by typicality of session



Example 4: A Crowd of Your Own
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 Personalized judgments from crowd workers

 Taste “grokking”

 Ask crowd workers to understand (“grok”) your interests

 Taste “matching”

 Find workers who are similar to you (like collaborative filtering)

 Useful for: personal collections, dynamic collections, 

or collections with many unique items

 Studied several subjective tasks

 Item recommendation (purchasing, food)

 Text summarization, Handwriting recognition

Organisciak et al., HCOMP 2015, IJCAI 2015



A Crowd of Your Own
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 “Personalized” judgments from crowd workers

?Requester

…
Workers



A Crowd of Your Own Details

 Grokking

 Requires fewer workers

 Fun for workers

 Hard to capture complex 
preferences

 Matching

 Requires many workers to 
find a good match

 Easy for workers

 Data reusable
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Baseline Grok Match

Salt 

shakers
1.64

1.07 

(34%)

1.43 

(13%)

Food 

(Boston)
1.51

1.38 

(9%)

1.19 

(22%)

Food 

(Seattle)
1.58

1.28

(19%)

1.26 

(20%)

 Crowdsourcing promising in domains where lack of 

prior data limits established personalization methods 



Challenges in Personalization

 User-centered

 Privacy

 Serendipity and novelty

 Transparency and control

 Systems-centered

 Evaluation

 Measurement, experimentation

 System optimization

 Storage, run-time, caching, etc.
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Privacy

 Profile and content need to be in the same place

 Local profile (e.g., PSearch)

 Private, only query sent to server

 Device specific, inefficient, no community learning

 Cloud profile (e.g., Web search)

 Need transparency and control over what’s stored

 Other approaches 

 Public or semi-public profiles (e.g., tweets, public FB status, blog posts,  papers)

 Light weight profiles (e.g., queries in a session)

 Matching to a group cohort vs. an individual
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Serendipity and Novelty

 Does personalization mean the end of 

serendipity?

 … Actually, it can improve it!

 Experiment on Relevance vs. Interestingness

 Personalization finds more relevant results

 Personalization also finds more interesting results

 Even when interesting results were not relevant

 Need to be ready for serendipity

 … Like the Princes of Serendip

CIKM Oct 26, 2016

André et al., CHI 2009, C&C 2009



Evaluation
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 External judges, e.g., assessors
 Lack diversity of intents and realistic context

 Crowdsourcing can help some

 Actual searchers are the “judges”
 Offline

 Labels from explicit judgments or implicit behavior (log analysis)

 Allows safe exploration of many different alternatives

 Online (A/B experiments)

 Explicit judgments: Nice, but annoying and may change behavior

 Implicit judgments: Scalable and natural, but can be very noisy 

 Linking implicit actions and explicit judgments

Kohavi, et al. 2009; Dumais et al. 2014



Summary
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 Queries difficult to interpret in isolation
 Augmenting query with context helps

 Potential for improving search via personalization is large

 Examples
 PNav, PSearch, Short/Long, Crowd

 Challenges
 Privacy, transparency, serendipity
 Evaluation, system optimization

 Personalization/contextualization prevalent today, and 
increasingly so in mobile and proactive scenarios



Thanks!
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Questions?

More info:   

http://research.microsoft.com/~sdumais

Collaborators:
 Eric Horvitz, Jaime Teevan, Paul Bennett, Ryen White, 

Kevyn Collins-Thompson, Peter Bailey, Eugene Agichtein, 

Sarah Tyler, Alex Kotov, Paul André, Carsten Eickhoff, 

Peter Organisciak

http://research.microsoft.com/~sdumais
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