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Overview

e
1 Context in search

0 “Potential for personalization” framework
0 Examples

O Personal navigation
o Client-side personalization
o Short- and long-term models

1 Personal crowds

0 Challenges and new directions
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20 Years Ago ... In Web Search

0 NCSA Mosaic graphical browser 3 years old, and
web search engines 2 years old
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20 Years Ago ... In Web Search

0 NCSA Mosaic graphical browser 3 years old, and
web search engines 2 years old
0 Online presence ~1996
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Conference on Information and Knowledge Management

The Conference on Information and Knowledge Management (CIKM) provides an international forum for presentation and discussion of rescarch on information
and knowledge management, as well as recent advances on data and knowledge bases. The purpose of the conference is to identify challenging problems facing the
development of future knowledge and information systems, and to shape future directions of research by soliciting and reviewing high quality, applied and
theoretical rescarch findings. An important part of the conference is the Workshops program which focuses on timely research challenges and

ves.

In 1995, CIKM is sponsered by ACM (through SIGART and SIGIR, and in cooperation with SIGLINK), and held in cooperation with AAAT and the University of
Maryland Baltimore County. The 1995 conference will be held at the Omni Inner Harbor Hotel, in Baltimore, Maryland from November 29 through December 2,
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* Advances in Geograph fi
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The material from the CIKM 94 Workshop on Intelligent Information Agents is still available. There is also information available on some related conferences . Welcame to Microsoft Research! This Web Space is designed to inform you about our group. If you are looking for

The topics of interest include, but are not limited to the following areas: hing (o1 in particular, please select the Search button at the top or bottom of this page for quick access
to information contained in this space. To learn more about MSR, check out the Microsoft Research Infroduction
+ Application of knowledge representation techniques to semantic modeling page.
+ Development and management of heterogeneous knowledge bases
+ Automatic acquisition of data and knowledge bases (especially raw text) To help structure this space we have divided our research arcas into fhree primary "Research Themes" and listed the

+ Object-oriented DBMS
+ Optimization techniques
+ Transaction marmg:menl
« High performance OLTP systems

various research groups according to theme. In addition to individual group pages. each theme has an overview page
with thumbnail descriptions of each group's activities. Independent researchers are listed on the Colleagues page.
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20 Years Ago ... In Web Search

0 NCSA Mosaic graphical browser 3 years old, and
web search engines 2 years old
0 Online presence ~1996

0 Size of the web
O # web sites: 2.7k

0 Size of Lycos search engine

0 # web pages in index: 54k

0 Behavioral logs
O # queries/day: 1.5k
O Most search and logging client-side
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Today ... Search is Everywhere

e
0 A billion web sites

0 Trillions of pages indexed by search engines

0 Billions of web searches and clicks per day

0 Search is a core fabric of everyday life
o Diversity of tasks and searchers

O Pervasive (web, desktop, enterprise, apps, etc.)

0 Understanding and supporting searchers
more important now than ever before
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Search in Context
_—
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Context Improves Query Understanding

EE =
0 Queries are difficult to interpret in isolation

I:”i!;. sigir ml

0 Easier if we can model: who is asking, what they have

done in the past, where they are, when it is, etc.

Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher)
VS. (SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Recons'rruc’rion)
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Context Improves Query Understanding

N
0 Queries are difficult to interpret in isolation
I:”i!;' sigir BI

0 Easier if we can model: who is asking, what they have done
in the past, where they are, when it is, etc.

Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher)
vs. (SIGIR | Stuart Bowen Jr.

Previous actions: (SIGIR | information retrieval)
vs. (SIGIR | U.S. coalitional provisional authority)

Location: (SIGIR | at SIGIR conference) vs. (SIGIR | in Washington DC)
Time: (SIGIR | Jan. submission) vs. (SIGIR | Aug. conference)

0 Using a single ranking for everyone, in every context, at
every point in time, limits how well a search engine can do
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Teevan et al., SIGIR 2008, ToCHI 2010

Potential For Personalization
N

0 A single ranking for everyone limits search quality

0 Quantify the variation in relevance for the same
query across different individuals

Potential for
Personalization

—— G
=l | ndkiduE]

Potential for Personalization
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Teevan et al., SIGIR 2008, ToCHI 2010

Potential For Personalization
N

0 A single ranking for everyone limits search quality

0 Quantify the variation in relevance for the same
query across different individuals

0 Different ways to measure individual relevance
O Explicit judgments from different people for the same query

O Implicit judgments from click entropy or content analysis

0 Personalization can lead to large improvements

O Study with explicit judgments B

1 —i - . s L g . -
otenti

0 46% improvements for core ranking

Normalized DCG

0.7

0 70% improvements with personalization
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Potential For Personalization

0 Not all queries have high potential for personalization

o E.g., facebook vs. sigir

o E.g., * maps 1

==hing maps

—=google maps

=
=]

—=las vegas strip map
==arga code map
—texas county map

Normalized DCG
=]
=

k=
-~

~=@UIOpe map
—street maps

e
o

1 2 3 4 5 & 7 & 9 10
Group Size

0 Learn when to personalize
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Potential for Personalization

SN I
0 Query: CIKM

0 What is the “potential for personalization”?

—
/ @, CIKM

CIKM® 2016 SRR u The AIB Centre for Information and Knowledge Management
COUNCILONINFORVATION | gy 115 ,
H ¢ Kk x
AND KNOWLEDGE planefinder omel xRk : s
MANAGEMENT ¢ :
Aviation Database Aircraft Diamond Twin Star (G-CIKM) g CIKM g
F\L S R

0 How can you tell different intents apart?
0 Contextual metadata
m E.g., Location, Time, Device, etc.
0 Past behavior

m Current session actions, Longer-term actions and preferences
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User Models

S,
0 Constructing user models

0 Sources of evidence

m Content: Queries, content of web pages, desktop index, etc.

m Behavior: Visited web pages, explicit feedback, implicit feedback

m Context: Location, time (of day/week/year), device, etc.

0 Time frames: Short-term, long-term PNav
0 Who: Individual, group
. PSearch
0 Using user models
0 Where resides: Client, server Short/Long

O How used: Ranking, query support, presentation, etc.

O When used: Always, sometimes, context learned
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Teevan et al., SIGIR 2007, WSDM 2011

Example 1: Personal Navigation
N

0 Re-finding is common in Web search
o 33% of queries are repeat queries
0 39% of clicks are repeat clicks

0 Many of these are navigational queries
o E.g., facebook -> www.facebook.com

o Consistent intent across individuals
O ldentified via low click entropy, anchor text

0 “Personal navigational” queries

o Different intents across individuals ... but
consistently the same intent for an individual
® SIGIR (for Dumais) -> www.sigir.org/sigir2017

m SIGIR (for Bowen Jr.) -> www.sigir.mil
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http://www.facebook.com/
http://www.sigir.org/sigir2017
http://www.sigir.mil/

Personal Navigation Details

N
0 Large-scale log analysis (offline)

o ldentifying personal navigation queries
m Use consistency of queries & clicks within an individual

m Specifically, the last two times a person issued the query,
did they have a unique click on same result?

o0 Coverage and prediction
® Many such queries: ~12% of queries
® Prediction accuracy high: ~95% accuracy
m High coverage, low risk personalization

0 A/B in situ evaluation (online)
o Confirmed benefits
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Teevan et al., SIGIR 2005, ToCHI 2010

Example 2: PSearch

S =
0 Rich client-side model of a person’s interests
O Model: Content from desktop search index & Interaction history
Rich and constantly evolving user model
O Client-side re-ranking of web search results using model

O Good privacy (only the query is sent to server)
m But, limited portability, and use of community

User profile:
* Content

* Interaction history /
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PSearch Details

N
0 Personalized ranking model

0 Score: Global web score + personal score

0 Personal score: Content match + interaction history features

0 Evaluation
o Offline evaluation, using explicit judgments

0 Online (in situ) A/B evaluation, using PSearch prototype
® Internal deployment, 225+ people several months

B 28% higher clicks, for personalized results B o SR

7 4% higher, when personal evidence is strong |-

® Learned model for when to personalize
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Bennett et al., SIGIR 2012

Example 3: Short + Long

S =
0 Long-term preferences and interests
0 Behavior: Specific queries/URLs
o Content: Language models, topic models, etc.
0 Short-term context or task
0 60% of search session have multiple queries
O Actions within current session (Q, click, topic)

m (Q=sigir | information retrieval vs. iraq reconstruction)
B (Q=cikm| knowledge mgt vs. twin star aircraft vs. discount tickets)

m (Q=ego | id vs. eldorado gold corporation vs. dangerously in love)

0 Personalized ranking model combines both
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Short + Long Details
N

0 User model (temporal extent)
O Session, Historical, Combinations [ [ e |
O Temporal weighting Past — e — Present
0 Large-scale log analysis
0 Which sources are important? , -
O Session (short-term): +25% ; Eg I I —
O Historic (long-term): +45% ; ES. e
0 Combinations: +65-75% 1
0 What happens within a session? oo N\ 1/ | o

m Historic

o 1% query, can only use historical

m Aggregate

Union

O By 3 query, short-term features
more important than long-term

Query Position in Session
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Eickhoff et al., WSDM 2013

Atypical Sessions
—

0 Example user model

/ 55% Football (“nfl”,”philadelphia eagles”,”"mark sanchez”) \

14% Boxing (“espn boxing”,”mickey garcia”,”hbo boxing”)
9% Television (“modern familiy”,”dexter 8”,"tv guide”)

6% Travel (“rome hotels”,“tripadvisor seattle

k2 ")

,‘rome pasta

\ 5% Hockey (“elmira pioneers”,”umass lax”,’necbl”) J
New Session 1: New Session 2:
Boxing (“soto vs ortiz hbo”) Dentistry (“root canal”)
Boxing (“humberto soto”) Dentistry (“dental implant”)

Healthcare (“dental implant recovery”)

0 ~6% of sessions are atypical
o Common topics: Medical (49%), Computers (24%)
O Tend to be more complex, and have poorer quality results
O What you “need” to do vs. what you “choose” to do
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Atypical Sessions Details

I
0 Learn model to identify atypical sessions

O Logistic regressions classifier

0 Apply different personalization models for them
o If typical, use long-term user model

o If atypical, use short-term session user model

0 Change in precision by typicality of session

Personalizing Atypical Sessions
0.008

0.007

0.006
o 0.005
3
= 0.004
2 0.003
£
Y 0,002

0.001

0 —_—
ession istoric id

-0.001
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Organisciak et al., HCOMP 2015, IJCAI 2015

Example 4: A Crowd of Your Own
N

0 Personalized judgments from crowd workers

O Taste “grokking™

m Ask crowd workers to understand (“grok”) your interests

o Taste “matching”

® Find workers who are similar to you (like collaborative filtering)

0 Useful for: personal collections, dynamic collections,
or collections with many unique items

0 Studied several subjective tasks
O ltem recommendation (purchasing, food)

O Text summarization, Handwriting recognition
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A Crowd of Your Own

0 “Personalized” judgments from crowd workers

Requester

Workers -
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A Crowd of Your Own Details

0 Grokking

O Requires fewer workers

o Fun for workers

O Hard to capture complex

preferences shakers
0 Matching
Food 151
O Requires many workers to (Boston) '
find a good match
O Easy for workers Food 158
(Seattle)

o Data reusable

0 Crowdsourcing promising in domains where lack of
prior data limits established personalization methods
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Challenges in Personalization

S
0 User-centered
O Privacy
O Serendipity and novelty

O Transparency and control

0 Systems-centered

1 Evaluation

B Measurement, experimentation

O System optimization

m Storage, run-time, caching, etc.
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Privacy
—

0 Profile and content need to be in the same place

0 Local profile (e.g., PSearch)
o Private, only query sent to server

o Device specific, inefficient, no community learning

0 Cloud profile (e.g., Web search)

O Need transparency and control over what’s stored

0 Other approaches

0 Public or semi-public profiles (e.g., tweets, public FB status, blog posts, papers)
O Light weight profiles (e.g., queries in a session)

O Matching to a group cohort vs. an individual
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André et al., CHI 2009, C&C 2009

Serendipity and Novelty e

]
0 Does personalization mean the end of
serendipity?
O ... Actually, it can improve it!

0 Experiment on Relevance vs. Interestingness

1 Personalization finds more relevant results

O Personalization also finds more interesting results

® Even when interesting results were not relevant

0 Need to be ready for serendipity
O ... Like the Princes of Serendip
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Kohavi, et al. 2009; Dumais et al. 2014

Evaluation

A E
0 External judges, e.g., assessors

O Lack diversity of intents and realistic context

O Crowdsourcing can help some

0 Actual searchers are the “judges”
o Offline

m Labels from explicit judgments or implicit behavior (log analysis)

m Allows safe exploration of many different alternatives

0 Online (A/B experiments)
m Explicit judgments: Nice, but annoying and may change behavior

® Implicit judgments: Scalable and natural, but can be very noisy

0 Linking implicit actions and explicit judgments
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Summary

0 Queries difficult to interpret in isolation "3 — |5
O Augmenting query with context helps PRCh=

"] Document

0 Potential for improving search via personalization is large

[SE———

0 Examples - ﬁ:% .

0 PNav, PSearch, Short/Long, Crowd

B 0 P g 0

0 Challenges
O Privacy, transparency, serendipity
O Evaluation, system optimization

0 Personalization/contextualization prevalent today, and
increasingly so in mobile and proactive scenarios
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Thanks!

I e
1 Questions?

0 More info:
http: / /research.microsoft.com/~sdumais

0 Collaborators:

O Eric Horvitz, Jaime Teevan, Paul Bennett, Ryen White,
Kevyn Collins-Thompson, Peter Bailey, Eugene Agichtein,
Sarah Tyler, Alex Kotov, Paul André, Carsten Eickhoff,
Peter Organisciak
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