Susan Dumais, Microsoft Research

UNDERSTANDING AND IMPROVING WEB SEARCH USING LARGE-SCALE BEHAVIORAL LOGS

Overview

The big data revolution

- ... examples from Web search
- Large-scale behavioral logs
 - Observations: Understand behavior
 - Experiments: Improve a system or service
- Limitations of logs
- Challenges

20 Years Ago ... (Not Such Big) Data

- □ In popular media ...
 - Mt St Helen's eruption, Friends debut, OJ trial
- □ In web and search ...
 - Mosaic one year old (pre Netscape, IE,
 - Size of the web
 - # web sites:
 - Size of Lycos search engine
 - # web pages in index:
 - Behavioral logs
 - # queries/day:
 - Most logging client-side

Today ... Big Data

- One trillion web sites
- Trillions of pages indexed by search engines
- Billions of posts and likes per day
- Billions of web searches and clicks per day
- Behavioral logs increasingly prevalent and changing our "ways of knowing"

What Are Behavioral Logs?

Traces of human behavior

- ... seen through the lenses of whatever sensors we have
- Web search: queries, results, clicks, dwell time, etc.

memorial day

Actual, real-world (in situ) behavior

bing

- Not ...
 - Recalled behavior
 - Subjective impressions of behavior
 - Controlled experimental task

Kinds of Behavioral Data

- Lab Studies
 - 10-100s of people (and tasks)
 - Known tasks, carefully controlled
 - Detailed information: video, gaze, thinkaloud
 - Can evaluate experimental systems

- Field Studies
 - 100-1000s of people (and tasks)
 - In-the-wild
 - Special instrumentation
 - Can probe about specific tasks, successes/failures

- Log Studies
 - Millions of people (and tasks)
 - In-the wild
 - Diversity and dynamics
 - Abundance of data, but it's noisy and unlabeled (what vs. why)

Kinds of Behavioral Data

	Observational	Experimental	
Lab Studies Controlled tasks, in laboratory, with detailed instrumentation	In-lab behavior observations	In-lab controlled tasks, comparisons of systems	
Field Studies In the wild, real-world tasks, ability to probe for detail	Ethnography, case studies, panels (e.g., Nielsen)	y, case studies, e.g., Nielsen)	
Log Studies In the wild, no explicit feedback but lots of implicit feedback	Logs from a single system	A/B testing of alternative systems or algorithms	

Goal: Build an abstract picture of behavior Goal: Decide if one approach is better than another

Benefits of Behavioral Logs

- Real-world
 - Portrait of real behavior, warts and all
- Large-scale
 - Millions of people and tasks
 - Rare behaviors are common
 - Small differences can be measured
 - Tremendous diversity of behaviors and information needs (the "long tail")
- Real-time
 - Feedback is immediate

Search in the Age of Big Data

□ How do you go from 2.4 words to anything sensible?

- Understanding what people want to do and whether they are successful
 - Behavioral logs (and more)

Surprises In (Early) Search Logs

Early log analysis ...

- AltaVista®
- Silverstein et al. 1999, Broder 2002
- Web search != library search
 - Queries are very short, 2.4 words
 - Lots of people search for sex
 - "Navigating" is common, 30-40%
 - Getting to web sites vs. finding out about things
 - "Re-finding" is common, 30-40%
 - Amazing diversity of information needs

Queries Not Equally Likely

Queries Vary Over Time (and Location)

Periodicities

- Predicted events
- Surprising events

Query	Time	User
aps 2014	10:41 am 5/15/14	142039
social science	10:44 am 5/15/14	142039
computational social science	10:56 am 5/15/14	142039
aps 2014	11:21 am 5/15/14	659327
hilton san francisco	11:59 am 5/15/14	659327
restaurants seattle	12:01 pm 5/15/14	318222
pikes market restaurants	12:17 pm 5/15/14	318222
stuart shulman	12:18 pm 5/15/14	142039
daytrips in seattle, wa	1:30 pm 5/15/14	554320
aps 2014	1:30 pm 5/15/14	659327
aps 2014 program	2:32 pm 5/15/14	435451
aps 2014.org	2:42 pm 5/15/14	435451
computational social science	4:56 pm 5/15/14	142039
aps 2014	5:02 pm 5/15/14	312055
xxx clubs in seattle	10:14 pm 5/15/14	142039
sex videos	1:49 am 5/16/14	142039

Query	Time	User
aps 2014	10:41 am 5/15/14	142039
social science	10:44 am 5/15/14	142039
computational social science	10:56 am 5/15/14	142039
aps 2014	11:21 am 5/15/14	659327
hilton san francisco	11:59 am 5/15/14	659327
restaurants seattle	12:01 pm 5/15/14	318222
pikes market restaurants	12:17 pm 5/15/14	318222
stuart shulman	12:18 pm 5/15/14	142039
daytrips in seattle, wa	1:30 pm 5/15/14	554320
aps 2014	1:30 pm 5/15/14	659327
aps program	2:32 pm 5/15/14	435451
aps 2014.org	2:42 pm 5/15/14	435451
computational social science	4:56 pm 5/15/14	142039
aps 2014	5:02 pm 5/15/14	312055
xxx clubs in seattle	10:14 pm 5/15/14	142039
sex videos	1:49 am 5/16/14	142039

Query typology E.g., "navigational queries"

Query	Time	User
aps 2014	10:41 am 5/15/14	142039
social science	10:44 am 5/15/14	142039
computational social science	10:56 am 5/15/14	142039
aps 2014	11:21 am 5/15/14	659327
hilton san francisco	11:59 am 5/15/14	659327
restaurants seattle	12:01 pm 5/15/14	318222
pikes market restaurants	12:17 pm 5/15/14	318222
stuart shulman	12:18 pm 5/15/14	142039
daytrips in seattle, wa	1:30 pm 5/15/14	554320
aps 2014	1:30 pm 5/15/14	659327
aps program	2:32 pm 5/15/14	435451
aps 2014.org	2:42 pm 5/15/14	435451
computational social science	4:56 pm 5/15/14	142039
aps 2014	5:02 pm 5/15/14	312055
xxx clubs in seattle	10:14 pm 5/15/14	142039
sex videos	1:49 am 5/16/14	142039

Query typology E.g., "navigational queries"

Query behavior E.g. "repeat Q"

Query	Time	User		
aps 2011	10:41 am 5/15/14	142039		
social science	10:44 am 5/15/14	142039	Query typology	
computational social science	10:56 am 5/15/14	142039	E.g., "navigational	
aps 2011	11:21 am 5/15/14	659327	queries	
hilton san francisco	11:59 am 5/15/14	659327		
restaurants seattle	12:01 pm 5/15/14	318222	Query behavior	
pikes market restaurants	12:17 pm 5/15/14	318222	E.g. "common Q"	
stuart shulman	12:18 pm 5/15/14	142039		
daytrips in seattle, wa	1:30 pm 5/15/14	554320		
aps 2011	1:30 pm 5/15/14	659327	Long-term trends	
aps program	2:32 pm 5/15/14	435451	E.g. "repeat Q or	
aps 2011.org	2:42 pm 5/15/14	435451	topic"	
computational social science	4:56 pm 5/15/14	142039		
jitp 2011	5:02 pm 5/15/14	312055		
xxx clubs in seattle	10:14 pm 5/15/14	142039		
sex videos	1:49 am 5/16/14	142039		

What Observational Logs Can Tell Us

- Summary measures
 - Query frequency
 - Query length
- Analysis of query intent
 - Query types and topics
- Temporal patterns
 - Session length
 - Common re-formulations
- Click behavior
 - Relevant results for query
 - Queries that lead to clicks

Queries appear 3.97 times [Silverstein et al. 1999]

Queries 2.35 terms [Jansen et al. 1998]

[Lau and Horvitz, 1999]

	retrieval function		
	bxx	tfc	hand-tuned
avg. clickrank	6.26 ± 1.14	6.18±1.33	6.04 ± 0.92

[Joachims 2002]

Informational, Navigational, Transactional [Broder 2002]

Sessions 2.20 queries long [Silverstein et al. 1999]

Uses of Observational Logs

- Provide insights about how people interact with existing systems and services
- Make it possible to design systems to support actual (rather than presumed) activities
- Enable design of more detailed experiments to focus on things that matter
- Support new user experiences

From Observations to Experiments

- Observations provide insights about behavior with existing systems
- **Experiments** are the life blood of web services
 - Controlled experiments to compare system variants
 - Used to study all aspects of search systems
 - System latency
 - Fonts, layout
 - Snippet generation techniques
 - Ranking algorithms
 - Data-driven design

Experiments At Web Scale

- Basic questions
 - What do you want to evaluate?
 - What metrics do you care about?
- □ Within- vs. between-"subject" design
 - Between: More widely used, conditions can run concurrently
 - Within: Temporal-split vs. Interleaving
- Controls, Counterfactuals, Power are important
- Some things easier to study than others
 - Algorithmic changes easy
 - Interface changes harder
 - Social systems even harder

Kohavi et al., 1999 Dumais et al., 2014

Examples from Contextual Search

Personal navigation Simple repeat behavior Adaptive ranking Rich user model with varied features and temporal extent Temporal dynamics

Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher)
vs. (SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Reconstruction)
Previous actions: (SIGIR | information retrieval)
vs. (SIGIR | U.S. coalitional provisional authority)
Location: (SIGIR | at SIGIR conference) vs. (SIGIR | in Washington DC)
Time: (SIGIR | Aug conference) vs. (SIGIR | Iraq news)

Using a single ranking for everyone, in every context, at every point in time limits how well a search engine can do

Teevan et al., 2007

Example 1: Personal Navigation

Re-finding common in web search

- 33% of queries are repeat queries
- 39% of clicks are repeat clicks

Many are navigational queries

E.g., nytimes-> <u>www.nytimes.com</u>

"Personal" navigational queries

- Different intents across individuals, but consistently same intent for an individual
 - E.g., SIGIR (for Dumais) -> <u>www.sigir.org</u>
 - E.g., SIGIR (for Bowen Jr.) -> <u>www.sigir.mil</u>
- Very high prediction accuracy (~95%)

High coverage (~15% of queries)

		Repeat Click	New Click
Repeat Query	33%	29%	4%
New Query	67 %	10%	57%
		39 %	61%

Bennett et al., 2012

Example 2: Adaptive Ranking

Short-term context

Previous actions (queries, clicks) within current session

(Q = Rich Shiffrin | psychology vs. lawyer)

- (Q = APS | psychology vs. physics vs. public utility vs. public schools)
- (Q = ACL | computational linguistics vs. knee injury vs. country music)

Long-term preferences and interests

Behavior: Specific queries/URLs

(Q=weather) -> weather.com vs. weather.gov vs. intellicast.com

Content: Language models, topic models, etc.

Unified model for both

Adaptive Ranking (cont'd)

- User model (content)
 - Specific queries/URLs
 - Topic distributions, using ODP
- Log-based evaluation, MAP
- Which sources are important?
 - Session (short-term): +25%
 - Historic (long-term): +45%
 - Combinations: +65-75%
- What happens within a session?
 - 60% of sessions involve multiple queries
 - By 3rd query in session, short-term features more important than long-term
 - First queries in session are different shorter, higher click entropy

User model (temporal extent)

Session, Historical, Combinations

Query

Temporal weighting

Elsas & Dumais, WSDM 2010 Radinski et al., TOIS 2013 Example 3: Temporal Dynamics

- Queries are not uniformly distributed over time
 - Often triggered by events in the wor
- What's relevant changes over time
 - **E.g.**, US Open ... in 2014 vs. in 2013
 - E.g., US Open 2014 ... in June (golf) vs. in
 - **E.g., US Golf Open 2014 ...**
 - Before event: Schedules and tickets, e.g., stubhub
 - During event: Real-time scores or broadcast, e.g., espn, cbssports
 - After event: General sites, e.g., wikipedia, usta

Temporal Dynamics (cont'd)

- Develop time-aware retrieval models
- Leverage <u>content</u> change on a page
 - Pages have different rates of change (influences document priors, P(D))
 - Terms have different longevity on a page (influences term weights, P(Q|D))
 - 15% improvement vs. LM baseline

- Leverage time-series modeling of <u>user interactions</u>
 - Model Query and URL clicks as time-series
 - Enables appropriate weighting of historical interaction
 - Useful for queries with local or global trends

Uses of Behavioral Logs

- Characterize information seeking behavior
- Enable practical improvements of search engines
 - Offline observations
 - E.g., Re-finding is common, Long tail of info needs
 - Behavioral features used in algorithms or interface
 - E.g., Previously clicked results boosted, query suggestion
 - Online experiments
 - E.g., Compare two algorithms or interfaces
- Change how systems are evaluated and improved

What Logs (Alone) Cannot Tell Us

Lots about "what" people are doing, less about "why"

- Limited annotations
 - People's intent
 - People's success
 - People's experience
 - People's attention
- Behavior can mean many things
- Limited to existing systems and interactions
- Complement with other techniques to provide a more complete picture (e.g., lab, field studies)

Summary

Large-scale behavioral logs

- Provide traces of human behavior in situ at a scale and fidelity previously unimaginable
- Observations and experiments enable us to characterize behavior and improve web search
- Revolutionized how web-based systems are designed and evaluated
- Complementary methods important to develop more complete understanding

□ Thank you!

■ More info at:

<u>http://research.microsoft.com/~sdumais</u>