UNDERSTANDING AND
IMPROVING WEB SEARCH USING
LARGE-SCALE BEHAVIORAL LOGS

Susan Dumais, Microsoft Research
Overview

- The big data revolution
 - ... examples from Web search
- Large-scale behavioral logs
 - Observations: Understand behavior
 - Experiments: Improve a system or service
- Limitations of logs
- Challenges
20 Years Ago … (Not Such Big) Data

- In popular media …
 - Mt St Helen’s eruption, *Friends* debut, OJ trial

- In web and search …
 - Mosaic one year old (pre Netscape, IE,
 - Size of the web
 - # web sites:
 - Size of Lycos search engine
 - # web pages in index:
 - Behavioral logs
 - # queries/day:
 - Most logging client-side
Today ... Big Data

- One trillion web sites
- Trillions of pages indexed by search engines
- Billions of posts and likes per day
- Billions of web searches and clicks per day
- Behavioral logs increasingly prevalent and changing our “ways of knowing”
What Are Behavioral Logs?

- Traces of human behavior
 - ... seen through the lenses of whatever sensors we have
 - Web search: queries, results, clicks, dwell time, etc.

- Actual, real-world (in situ) behavior
 - Not ...
 - Recalled behavior
 - Subjective impressions of behavior
 - Controlled experimental task
Kinds of Behavioral Data

- **Lab Studies**
 - 10-100s of people (and tasks)
 - Known tasks, carefully controlled
 - Detailed information: video, gaze, think-aloud
 - Can evaluate experimental systems

- **Field Studies**
 - 100-1000s of people (and tasks)
 - In-the-wild
 - Special instrumentation
 - Can probe about specific tasks, successes/failures

- **Log Studies**
 - Millions of people (and tasks)
 - In-the-wild
 - Diversity and dynamics
 - Abundance of data, but it’s noisy and unlabeled (what vs. why)
Kinds of Behavioral Data

<table>
<thead>
<tr>
<th>Lab Studies</th>
<th>Observational</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled tasks, in laboratory, with detailed instrumentation</td>
<td>In-lab behavior observations</td>
<td>In-lab controlled tasks, comparisons of systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Studies</th>
<th>Observational</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the wild, real-world tasks, ability to probe for detail</td>
<td>Ethnography, case studies, panels (e.g., Nielsen)</td>
<td>Clinical trials and field tests</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Log Studies</th>
<th>Observational</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the wild, no explicit feedback but lots of implicit feedback</td>
<td>Logs from a single system</td>
<td>A/B testing of alternative systems or algorithms</td>
</tr>
</tbody>
</table>

Goal: Build an abstract picture of behavior
Goal: Decide if one approach is better than another
Benefits of Behavioral Logs

- Real-world
 - Portrait of real behavior, warts and all

- Large-scale
 - Millions of people and tasks
 - Rare behaviors are common
 - Small differences can be measured
 - Tremendous diversity of behaviors and information needs (the “long tail”)

- Real-time
 - Feedback is immediate
How do you go from 2.4 words to anything sensible?

- **Content**
 - Match (query, page content)

- **Link structure**
 - Used to set non-uniform priors on pages

- **User behavior**
 - Anchor text
 - Query-click data

- **Contextual metadata**
 - Who, what, where, when, …

Understanding what people want to do and whether they are successful

- Behavioral logs (and more)

Driven by ... behavioral log data
Surprises In (Early) Search Logs

- Early log analysis ...
 - Silverstein et al. 1999, Broder 2002
- Web search != library search
 - Queries are very short, 2.4 words
 - Lots of people search for sex
 - “Navigating” is common, 30-40%
 - Getting to web sites vs. finding out about things
 - “Re-finding” is common, 30-40%
 - Amazing diversity of information needs
Queries Not Equally Likely

- **Excite 1999 data**
 - ~2.5mil queries
 - Head: top 250 accounts for 10% of queries
 - Tail: ~950k occur exactly once

- **Zipf Distribution**

<table>
<thead>
<tr>
<th>Q Rank</th>
<th>Q Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Top 10 Q</th>
<th>Query Freq = 10</th>
<th>Query Freq = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>bahia AND brazil</td>
<td>‘coren, s’</td>
</tr>
<tr>
<td>yahoo</td>
<td>games</td>
<td>UNC neuroscience</td>
</tr>
<tr>
<td>chat</td>
<td>mp3</td>
<td>hormones in memory loss</td>
</tr>
<tr>
<td>horoscope</td>
<td>weather</td>
<td>electronic roladex memory</td>
</tr>
<tr>
<td>pokemon</td>
<td>ebay</td>
<td>email address for paul allen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the seattle seahawks owner</td>
</tr>
</tbody>
</table>

Navigational queries, one-word queries
Multi-word queries, specific URLs
Complex queries, rare info needs, misspellings, URLs
Queries Vary Over Time (and Location)

- Periodicities
 - Daily
 - Weekly
 - Longer

- Trends

- Predicted events

- Surprising events

Q = flu

Q = IRS taxes

Q = pizza
<table>
<thead>
<tr>
<th>Query</th>
<th>Time</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>aps 2014</td>
<td>10:41 am 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>social science</td>
<td>10:44 am 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>computational social science</td>
<td>10:56 am 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>aps 2014</td>
<td>11:21 am 5/15/14</td>
<td>659327</td>
</tr>
<tr>
<td>hilton san francisco</td>
<td>11:59 am 5/15/14</td>
<td>659327</td>
</tr>
<tr>
<td>restaurants seattle</td>
<td>12:01 pm 5/15/14</td>
<td>318222</td>
</tr>
<tr>
<td>pikes market restaurants</td>
<td>12:17 pm 5/15/14</td>
<td>318222</td>
</tr>
<tr>
<td>stuart shulman</td>
<td>12:18 pm 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>daytrips in seattle, wa</td>
<td>1:30 pm 5/15/14</td>
<td>554320</td>
</tr>
<tr>
<td>aps 2014</td>
<td>1:30 pm 5/15/14</td>
<td>659327</td>
</tr>
<tr>
<td>aps 2014 program</td>
<td>2:32 pm 5/15/14</td>
<td>435451</td>
</tr>
<tr>
<td>aps 2014.org</td>
<td>2:42 pm 5/15/14</td>
<td>435451</td>
</tr>
<tr>
<td>computational social science</td>
<td>4:56 pm 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>aps 2014</td>
<td>5:02 pm 5/15/14</td>
<td>312055</td>
</tr>
<tr>
<td>xxx clubs in seattle</td>
<td>10:14 pm 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>sex videos</td>
<td>1:49 am 5/16/14</td>
<td>142039</td>
</tr>
<tr>
<td>Query</td>
<td>Time</td>
<td>User</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>aps 2014</td>
<td>10:41 am</td>
<td>142039</td>
</tr>
<tr>
<td>social science</td>
<td>10:44 am</td>
<td>142039</td>
</tr>
<tr>
<td>computational social science</td>
<td>10:56 am</td>
<td>142039</td>
</tr>
<tr>
<td>aps 2014</td>
<td>11:21 am</td>
<td>659327</td>
</tr>
<tr>
<td>hilton san francisco</td>
<td>11:59 am</td>
<td>659327</td>
</tr>
<tr>
<td>restaurants seattle</td>
<td>12:01 pm</td>
<td>318222</td>
</tr>
<tr>
<td>pikes market restaurants</td>
<td>12:17 pm</td>
<td>318222</td>
</tr>
<tr>
<td>stuart shulman</td>
<td>12:18 pm</td>
<td>142039</td>
</tr>
<tr>
<td>daytrips in seattle, wa</td>
<td>1:30 pm</td>
<td>554320</td>
</tr>
<tr>
<td>aps 2014</td>
<td>1:30 pm</td>
<td>659327</td>
</tr>
<tr>
<td>aps program</td>
<td>2:32 pm</td>
<td>435451</td>
</tr>
<tr>
<td>aps 2014.org</td>
<td>2:42 pm</td>
<td>435451</td>
</tr>
<tr>
<td>computational social science</td>
<td>4:56 pm</td>
<td>142039</td>
</tr>
<tr>
<td>aps 2014</td>
<td>5:02 pm</td>
<td>312055</td>
</tr>
<tr>
<td>xxx clubs in seattle</td>
<td>10:14 pm</td>
<td>142039</td>
</tr>
<tr>
<td>sex videos</td>
<td>1:49 am</td>
<td>142039</td>
</tr>
</tbody>
</table>

Query typology
E.g., “navigational queries”
<table>
<thead>
<tr>
<th>Query</th>
<th>Time</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>aps 2014</td>
<td>10:41 am</td>
<td>142039</td>
</tr>
<tr>
<td>social science</td>
<td>10:44 am</td>
<td>142039</td>
</tr>
<tr>
<td>computational social science</td>
<td>10:56 am</td>
<td>142039</td>
</tr>
<tr>
<td>aps 2014</td>
<td>11:21 am</td>
<td>659327</td>
</tr>
<tr>
<td>hilton san francisco</td>
<td>11:59 am</td>
<td>659327</td>
</tr>
<tr>
<td>restaurants seattle</td>
<td>12:01 pm</td>
<td>318222</td>
</tr>
<tr>
<td>pikes market restaurants</td>
<td>12:17 pm</td>
<td>318222</td>
</tr>
<tr>
<td>stuart shulman</td>
<td>12:18 pm</td>
<td>142039</td>
</tr>
<tr>
<td>daytrips in seattle, wa</td>
<td>1:30 pm</td>
<td>554320</td>
</tr>
<tr>
<td>aps 2014</td>
<td>1:30 pm</td>
<td>659327</td>
</tr>
<tr>
<td>aps program</td>
<td>2:32 pm</td>
<td>435451</td>
</tr>
<tr>
<td>aps 2014.org</td>
<td>2:42 pm</td>
<td>435451</td>
</tr>
<tr>
<td>computational social science</td>
<td>4:56 pm</td>
<td>142039</td>
</tr>
<tr>
<td>aps 2014</td>
<td>5:02 pm</td>
<td>312055</td>
</tr>
<tr>
<td>xxx clubs in seattle</td>
<td>10:14 pm</td>
<td>142039</td>
</tr>
<tr>
<td>sex videos</td>
<td>1:49 am</td>
<td>142039</td>
</tr>
</tbody>
</table>

Query typology
E.g., “navigational queries”

Query behavior
E.g. “repeat Q”
<table>
<thead>
<tr>
<th>Query</th>
<th>Time</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>aps 2011</td>
<td>10:41 am 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>social science</td>
<td>10:44 am 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>computational social science</td>
<td>10:56 am 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>aps 2011</td>
<td>11:21 am 5/15/14</td>
<td>659327</td>
</tr>
<tr>
<td>hilton san francisco</td>
<td>11:59 am 5/15/14</td>
<td>659327</td>
</tr>
<tr>
<td>restaurants seattle</td>
<td>12:01 pm 5/15/14</td>
<td>318222</td>
</tr>
<tr>
<td>pikes market restaurants</td>
<td>12:17 pm 5/15/14</td>
<td>318222</td>
</tr>
<tr>
<td>stuart shulman</td>
<td>12:18 pm 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>daytrips in seattle, wa</td>
<td>1:30 pm 5/15/14</td>
<td>554320</td>
</tr>
<tr>
<td>aps 2011</td>
<td>1:30 pm 5/15/14</td>
<td>659327</td>
</tr>
<tr>
<td>aps program</td>
<td>2:32 pm 5/15/14</td>
<td>435451</td>
</tr>
<tr>
<td>aps 2011.org</td>
<td>2:42 pm 5/15/14</td>
<td>435451</td>
</tr>
<tr>
<td>computational social science</td>
<td>4:56 pm 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>jitp 2011</td>
<td>5:02 pm 5/15/14</td>
<td>312055</td>
</tr>
<tr>
<td>xxx clubs in seattle</td>
<td>10:14 pm 5/15/14</td>
<td>142039</td>
</tr>
<tr>
<td>sex videos</td>
<td>1:49 am 5/16/14</td>
<td>142039</td>
</tr>
</tbody>
</table>

Query typology
E.g., “navigational queries”

Query behavior
E.g. “common Q”

Long-term trends
E.g. “repeat Q or topic”
What Observational Logs Can Tell Us

- Summary measures
 - Query frequency
 - Query length
- Analysis of query intent
 - Query types and topics
- Temporal patterns
 - Session length
 - Common re-formulations
- Click behavior
 - Relevant results for query
 - Queries that lead to clicks

- Queries appear 3.97 times
 [Silverstein et al. 1999]
- Queries 2.35 terms
 [Jansen et al. 1998]
- Informational, Navigational, Transactional
 [Broder 2002]
- Sessions 2.20 queries long
 [Silverstein et al. 1999]
- [Lau and Horvitz, 1999]

- [Joachims 2002]
Uses of Observational Logs

- Provide insights about how people interact with existing systems and services
- Make it possible to design systems to support actual (rather than presumed) activities
- Enable design of more detailed experiments to focus on things that matter
- Support new user experiences
Observations provide insights about behavior with existing systems

Experiments are the life blood of web services

- Controlled experiments to compare system variants
- Used to study all aspects of search systems
 - System latency
 - Fonts, layout
 - Snippet generation techniques
 - Ranking algorithms
- Data-driven design
Experiments At Web Scale

- Basic questions
 - What do you want to evaluate?
 - What metrics do you care about?
- Within- vs. between-”subject” design
 - Between: More widely used, conditions can run concurrently
 - Within: Temporal-split vs. Interleaving
- Controls, Counterfactuals, Power are important
- Some things easier to study than others
 - Algorithmic changes easy
 - Interface changes harder
 - Social systems even harder

Kohavi et al., 1999
Dumais et al., 2014
Examples from Contextual Search

- Personal navigation
 - Simple repeat behavior
- Adaptive ranking
 - Rich user model with varied features and temporal extent
- Temporal dynamics
One Size Does Not Fit All

- Queries are difficult to interpret in isolation
 - Easier if we can model: who is asking, where they are, what they have done in the past, etc.

 Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher) vs. (SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Reconstruction)

 Previous actions: (SIGIR | information retrieval) vs. (SIGIR | U.S. coalitional provisional authority)

 Location: (SIGIR | at SIGIR conference) vs. (SIGIR | in Washington DC)

 Time: (SIGIR | Aug conference) vs. (SIGIR | Iraq news)

- Using a **single ranking for everyone, in every context, at every point in time** limits how well a search engine can do
Example 1: Personal Navigation

- Re-finding common in web search
 - 33% of queries are repeat queries
 - 39% of clicks are repeat clicks

- Many are navigational queries
 - E.g., nytimes-> www.nytimes.com

- “Personal” navigational queries
 - Different intents across individuals, but consistently same intent for an individual
 - E.g., SIGIR (for Dumais) -> www.sigir.org
 - E.g., SIGIR (for Bowen Jr.) -> www.sigir.mil
 - Very high prediction accuracy (~95%)
 - High coverage (~15% of queries)

<table>
<thead>
<tr>
<th></th>
<th>Repeat Click</th>
<th>New Click</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat Query</td>
<td>33%</td>
<td>29%</td>
</tr>
<tr>
<td>New Query</td>
<td>67%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>39%</td>
<td>61%</td>
</tr>
</tbody>
</table>
Example 2: Adaptive Ranking

- **Short-term context**
 - Previous actions (queries, clicks) within current session
 - (Q = Rich Shiffrin | psychology vs. lawyer)
 - (Q = APS | psychology vs. physics vs. public utility vs. public schools)
 - (Q = ACL | computational linguistics vs. knee injury vs. country music)

- **Long-term preferences and interests**
 - Behavior: Specific queries/URLs
 - (Q=weather) -> weather.com vs. weather.gov vs. intellicast.com
 - Content: Language models, topic models, etc.

- Unified model for both
Adaptive Ranking (cont’d)

- User model (content)
 - Specific queries/URLs
 - Topic distributions, using ODP

- Log-based evaluation, MAP

- Which sources are important?
 - Session (short-term): +25%
 - Historic (long-term): +45%
 - Combinations: +65-75%

- What happens within a session?
 - 60% of sessions involve multiple queries
 - By 3rd query in session, short-term features more important than long-term
 - First queries in session are different – shorter, higher click entropy

- User model (temporal extent)
 - Session, Historical, Combinations
 - Temporal weighting
Example 3: Temporal Dynamics

- Queries are not uniformly distributed over time
 - Often triggered by events in the world
- What’s relevant changes over time
 - E.g., US Open … in 2014 vs. in 2013
 - E.g., US Open 2014 … in June (golf) vs. in Sept (tennis)
 - E.g., US Golf Open 2014 …
 - Before event: Schedules and tickets, e.g., stubhub
 - During event: Real-time scores or broadcast, e.g., espn, cbssports
 - After event: General sites, e.g., wikipedia, usta
Temporal Dynamics (cont’d)

- Develop time-aware retrieval models

- Leverage **content** change on a page
 - Pages have different *rates of change* (influences document priors, $P(D)$)
 - Terms have different *longevity* on a page (influences term weights, $P(Q|D)$)
 - 15% improvement vs. LM baseline

- Leverage time-series modeling of **user interactions**
 - Model Query and URL clicks as time-series
 - Enables appropriate weighting of historical interactions
 - Useful for queries with local or global trends
Uses of Behavioral Logs

- Characterize information seeking behavior
- Enable practical improvements of search engines
 - Offline observations
 - E.g., Re-finding is common, Long tail of info needs
 - Behavioral features used in algorithms or interface
 - E.g., Previously clicked results boosted, query suggestion
 - Online experiments
 - E.g., Compare two algorithms or interfaces
- Change how systems are evaluated and improved
What Logs (Alone) Cannot Tell Us

- Lots about “what” people are doing, less about “why”
- Limited annotations
 - People’s intent
 - People’s success
 - People’s experience
 - People’s attention
- Behavior can mean many things
- Limited to existing systems and interactions
- Complement with other techniques to provide a more complete picture (e.g., lab, field studies)
Summary

- Large-scale behavioral logs
 - Provide traces of human behavior in situ at a scale and fidelity previously unimaginable
 - Observations and experiments enable us to characterize behavior and improve web search
 - Revolutionized how web-based systems are designed and evaluated

- Complementary methods important to develop more complete understanding
Thank you!

More info at:
http://research.microsoft.com/~sdumais